English

AB किसी वृत्त का एक व्यास है तथा C उसकी परिधि पर कोई बिंदु है। सिद्ध कीजिए कि ∆ ABC का क्षेत्रफल महत्तम उस समय होगा जब वह समद्धिबाहु है। - Mathematics (गणित)

Advertisements
Advertisements

Question

AB किसी वृत्त का एक व्यास है तथा C उसकी परिधि पर कोई बिंदु है। सिद्ध कीजिए कि ∆ ABC का क्षेत्रफल महत्तम उस समय होगा जब वह समद्धिबाहु है।

Sum

Solution

मान लीजिए AB व्यास है और C त्रिज्या r वाले वृत्त पर कोई बिंदु है।

∠ACB = 90°  ......[अर्धवृत्त में कोण 90° है]

माना AC = x

∴ BC = `sqrt("AB"^2 - "AC"^2)`

⇒ BC = `sqrt((2"r")^2 - x^2)`

⇒ BC = `sqrt(4"r"^2 - x^2)`  ....(i)

अब  ∆ABC का क्षेत्रफल

A = `1/2 xx "AC" xx "BC"`

⇒ A = `1/2 x * sqrt(4"r"^2 - x^2)`

दोनों पक्षों का वर्ग करने पर, हम प्राप्त करते हैं

A2 = `1/4 x^2 (4"r"^2 - x^2)`

माना A2  = Z

∴ Z = `1/4 x^2(4"r"^2 - x^2)`

⇒ Z = `1/4(4x^2"r"^2 - x^4)`

दोनों पक्षों में अंतर करना w.r.t. x, हमें मिलता है

`"dZ"/"dx" = 1/4 [8x"r"^2 - 4x^3]`  ....(ii)

`"dZ"/"dx"` = 0 स्थानीय उच्चिष्ठ और स्थानीय निम्निष्ठ के लिए, 

∴ `1/4 [8x"r"^2 - 4x^3]` = 0

⇒ `x[2"r"^2 - x^2]` = 0

x ≠ 0

∴ 2r2 – x2 = 0

⇒ x2 = 2r2

⇒ x = `sqrt(2)"r"`

= AC

अब समीकरण (i) से हमारे पास है

BC = `sqrt(4"r"^2 - 2"r"^2)`

⇒ BC = `sqrt(2"r"^2)`

⇒ BC = `sqrt(2)"r"`

तो AC = BC

अत: ABC एक समद्विबाहु त्रिभुज है।

विभेदक समीकरण (ii) w.r.t. x, हमें मिलता है

`("d"^2"Z")/("dx"^2) = 1/4 [8"r"^2 - 12x^2]`

x = `sqrt(2)"r"` लगाए।

∴ `("d"^2"Z")/("dx"^2) = 1/4 [8"r"^2 - 12 xx 2"r"^2]`

= `1/4[8"r"^2 - 24"r"^2]`

= `1/4 xx (-16"r"^2)`

= `-4"r"^2 < 0` उच्चिष्ठ

इसलिए, ∆ABC का क्षेत्रफल अधिकतम होता है जब यह एक समद्विबाहु त्रिभुज होता है।

shaalaa.com
अवकलज के अनुप्रयोग
  Is there an error in this question or solution?
Chapter 6: अवकलज के अनुप्रयोग - प्रश्नावली [Page 135]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 32 | Page 135

RELATED QUESTIONS

अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।

`(17/81)^(1/4)`


वक्र  y = 5x – 2x3 के लिए, यदि x में 2 इकाई/से. की दर से वृद्धि हो रही है, तो x = 3 पर वक्र का प्रावण्य कितनी तीव्रता से परिवर्तित हो रहा है?


सिद्ध कीजिए कि फलन f(x) = tanx – 4x  अंतराल `((-pi)/3, pi/3)` निरंतर हासमान है।


अवकलों के प्रयोग द्वारा `sqrt(0.082)` का सन्निकट मान ज्ञात कीजिए।


फलन f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105` के सभी स्थानीय उच्चिष्ठ तथा स्थानीय निम्निष्ठ बिंदुओं को ज्ञात कीजिए।


वक्र y = cos (x + y), –2π ≤ x ≤ 2π, की उन सभी स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा x + 2y = 0 के समांतर हैं।


अंतराल `[-pi/2, pi/2]` में फलन f (x) = sin2x – x, के उच्चतम तथा निम्नितम मानों का अंतर ज्ञात कीजिए।


शीर्ष कोण `2theta` वाला एक समद्धिबाहु त्रिभुज a त्रिज्या वाले किसी वृत्त के अंतर्गत स्थित है। सिद्ध कीजिए कि त्रिभुजं का क्षेत्रफल उच्चतम है। जब `theta = pi/6`


वक्र y = sinx के बिंदु (0, 0) पर अभिलंब का समीकरण:


मान लीजिए कि c पर f का द्वितीय अवकलज है, इस प्रकार कि f ′(c) = 0 तथा f ″(c) > 0, तो c पर फलन ______ है।


किसी गोले के आयतन के परिवर्तन की दर उसके पृष्ठीय क्षेत्रफल के सापेक्ष, जब उसकी त्रिज्या 2cm है, ______ है।


एक दूसरे से 45° पर झुकी हुई दो सड़कों के संधि-स्थल से दो मनुष्य A तथा B, एक ही समय v वेग से चलना प्रारम्भ करते हैं। यदि वे अलग-अलग सड़कों पर चलते हैं तो उनके परस्पर एक दूसरे से अलग होने की दर ज्ञात कीजिए।


(1.999)5 का सन्निकट मान ज्ञात कीजिए।


एक खोखले बेलनाकार खोल, जिसकी आंतरिक तथा बाह्य त्रिज्याएँ क्रमश: 3 cm तथा 3.0005 cm हैं, में धातु के आयतन का सन्निकट मान ज्ञात कीजिए।


किसी घन का आयतन एक अचर दर से बढ़ रहा है। सिद्ध कीजिए कि उसके पृष्ठीय क्षेत्रफल की वृद्धि उसकी भुजा की व्युत्क्रमानुपाती है।


वक्र y = 4 – x2 तथा y = x2 का प्रतिच्छेद-कोण ज्ञात कीजिए।


सिद्ध कीजिए कि वक्र y2 = 4x तथा x2 + y2 – 6x + 1 = 0 एक दूसरे को बिंदु (1, 2) पर स्पर्श करते हैं।


वक्र x2 + y2 – 2x – 4y + 1 = 0 के किन बिंदुओं पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।


सिद्ध कीजिए कि f (x) = sinx + `sqrt3` cosx का उच्चिष्ठ मान x = `pi/6` पर है।


c2 क्षेत्रफल के किसी दिए हुए गत्ते से वर्गाकार आधार का एक खुला हुआ बाक्स बनाना है। सिद्ध कीजिए कि बाक्स का महत्तम आयतन `c^3/(6sqrt3)` घन इकाई है।


वर्गाकार आधार तथा ऊर्ध्वाधर पृष्ठ वाले धातु के किसी बाक्स में 1024 cm3 वस्तु आती है। शीर्ष तथा आधार के पृष्ठों के माल (वस्तु) का मूल्य Rs 5/cm2 है तथा पृष्ठों के मान का मूल्य Rs 2.50/cm2  हैं। बाक्स का निम्नतम मूल्य ज्ञात कीजिए।


वक्र y = e2x की, बिंदु (0, 1) पर, स्पर्श रेखा x-अक्ष से बिंदु  ______


वक्र x = t2 + 3t – 8, y = 2t2 – 2t – 5 की, बिंदु (2, -1) पर, स्पर्श रेखा की प्रवणता ______ है।


फलन f(x) = tanx – x ______ 


फलन f (x) = 2x3 – 3x2 – 12x + 4 के ______


फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।


फलन f(x) = `"a"x + "b"/x` (a > 0, b > 0, x > 0) का निम्नतम मान ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×