English

वर्गाकार आधार तथा ऊर्ध्वाधर पृष्ठ वाले धातु के किसी बाक्स में 1024 cm3 वस्तु आती है। शीर्ष तथा आधार के पृष्ठों के माल (वस्तु) का मूल्य Rs 5/cm2 है - Mathematics (गणित)

Advertisements
Advertisements

Question

वर्गाकार आधार तथा ऊर्ध्वाधर पृष्ठ वाले धातु के किसी बाक्स में 1024 cm3 वस्तु आती है। शीर्ष तथा आधार के पृष्ठों के माल (वस्तु) का मूल्य Rs 5/cm2 है तथा पृष्ठों के मान का मूल्य Rs 2.50/cm2  हैं। बाक्स का निम्नतम मूल्य ज्ञात कीजिए।

Sum

Solution

मान लीजिए x वर्गाकार आधार की भुजा है और y ऊर्ध्वाधर भुजाओं की लंबाई है।

आधार और तल का क्षेत्रफल = 2x2 cm2

∴ आवश्यक सामग्री की लागत = ₹ 5 × 2x2

= ₹ 10x2

4 भुजाओं का क्षेत्रफल = 4xy cm2

∴ चारों पक्षों के लिए सामग्री की लागत

= ₹ 2.50 x 4xy

= ₹ 10xy

कुल लागत C = 10x2 + 10xy  .....(i)

बाक्स का नया आयतन = x × x × y

⇒ 1024 = x2y

∴ y = `1024/x^2`  ....(ii)

y का मान समीकरण (i) में रखने पर हमें प्राप्त होता है

C = `10x^2 + 10x xx 1024/x^2`

⇒ C = `10x^2 + 10240/x`

दोनों पक्षों में अंतर करना w.r.t. x, हमें मिलता है

`"dC"/"dx" = 20x - 10240/x^2`  ....(iii)

`"dC"/"dx"` = 0 स्थानीय उच्चिष्ठ और स्थानीय निम्निष्ठ के लिए,

`20 - 102400/x^2` = 0

⇒ 20x3 – 10240 = 0

⇒ x3 = 512

⇒ x = 8 cm

अब समीकरण (ii) से

y = `10240/(8)^2`

= `10240/64`

= 16 cm

∴ प्रयुक्त सामग्री की लागत C = 10x2 + 10xy

= 10 × 8 × 8 + 10 × 8 × 16

= 640 + 1280

= 1920

अब अवकलन समीकरण (iii) से हम प्राप्त करते हैं

`("d"^2"C")/("dx"^2) = 20 + 20480/x^3`

x = 8 रखो

= `20 + 20480/(8)^3`

= `20 + 20480/512`

= 20 + 40 = 60 > 0 निम्निष्ठ

अत: अभीष्ट लागत ₹ 1920 है जो कि न्यूनतम है।

shaalaa.com
अवकलज के अनुप्रयोग
  Is there an error in this question or solution?
Chapter 6: अवकलज के अनुप्रयोग - प्रश्नावली [Page 135]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 33 | Page 135

RELATED QUESTIONS

अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।

(33)-1/5


`pi/4` अर्ध शीर्ष कोण वाले एक शांकवीय कीप (funnel) से, जिसकां शीर्ष नीचे की ओर है, कीप के पृष्ठ के क्षेत्रफल में 2cm2/sec की समान दर से उसके शीर्ष के एक छिद्र से पानी बह रहा है। पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब उसकी तिर्यंक ऊँचाई 4cm है।


वक्र y2 = x तथा x2 = y के बीच का प्रतिच्छेद - कोण ज्ञात कीजिए।


किसी शांकवीय बर्तन के शीर्ष के एक छोटे छिद्र से, जिसका अक्ष ऊर्घ्वाधर है, पानी 1 cu cm/sec की दर से बह रहा है। बर्तन में पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब तिर्यक ऊँचाई 4 cm हैं। शांकवीय बर्तन का शीर्ष कोण `pi/6` है।


उस महत्तम आयत का क्षेत्रफल ज्ञात कीजिए, जो दीर्घवृत्त `x^2/a^2 + y^2/b^2` = 1 के अंतर्गत स्थित है।


शीर्ष कोण `2theta` वाला एक समद्धिबाहु त्रिभुज a त्रिज्या वाले किसी वृत्त के अंतर्गत स्थित है। सिद्ध कीजिए कि त्रिभुजं का क्षेत्रफल उच्चतम है। जब `theta = pi/6`


वक्र `3"y" = 6"x"  –  5"x"^3` पर स्थित उस बिंदु का भुज, जिस पर वक्र का अभिलंब मूल बिंदुसे होकर जाता है।


दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 = 2


वक्र y = sinx के बिंदु (0, 0) पर अभिलंब का समीकरण:


मान लीजिए कि c पर f का द्वितीय अवकलज है, इस प्रकार कि f ′(c) = 0 तथा f ″(c) > 0, तो c पर फलन ______ है।


यदि किसी वृत्त का क्षेत्रफल एक समान दर से बढ़ता है, तो सिद्ध कीजिए कि उसका परिमाप (परिधि) उसकी त्रिज्या के व्युत्क्रमानुपाती होता है


एक पतंग 151.5 cm की ऊंचाई पर क्षैतिज दिशा में गतिमान है। यदि पतंग की चाल 10 m/s है, तो डोरी को कितनी तेजी से छोड़ा जा रहा है, जब उसकी दूरी पतंग उड़ाने वाले लड़के से 250 cm है? लड़के की ऊंचाई 1.5 m है।


कोण θ, 0 < θ < `π/2`, ज्ञात कीजिए जो अपने sine से दोगुनी तेजी से बढ़ता है।


(1.999)5 का सन्निकट मान ज्ञात कीजिए।


वक्र `sqrt(x) + sqrt(y) = 4` उस बिंदु के निर्देशांक ज्ञात कीजिए, जिस पर स्पर्श रेखा का अक्षों से झुकाव समान है।


सिद्ध कीजिए कि f (x) = 2x + cot–1x + log `(sqrt(1+x^2) - x)`, R में वर्धमान फलन है।


सिद्ध कीजिए कि a ≥ 1 के लिए f (x) = `sqrt3` sinx - cosx - 2ax + b, R में हासमान फलन है।


यदि किसी समकोण त्रिभुज की एक भुजा तथा कर्ण की लंबाईयों का योगफल दिया हुआ है, तो सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल उच्चतम है, जब उनके मध्य का कोण `pi/3` है।


किसी समबाहु त्रिभुज की भुजाएँ  2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।


एक क्षैतिज फर्श पर 5 मीटर लंबी एक सीढ़ी किसी ऊर्ध्वाधर दीवार पर झुकी है।यदि सीढ़ी का ऊपरी सिरा 10 cm/sec, की दर से नीचे की ओर फिसल रहा है तो सीढ़ी तथा फर्श के बीच का कोण, उस समय जब सीढ़ी का निचला सिरा दीवार से 2 मीटर दूर है:


वक्र y (1 + x2 ) = 2 – x के, उस बिंदु पर, जहाँ यह x-अक्ष को काटती है, स्पर्श रेखा का समीकरण ______


वक्र x = t2 + 3t – 8, y = 2t2 – 2t – 5 की, बिंदु (2, -1) पर, स्पर्श रेखा की प्रवणता ______ है।


 वह अंतराल, जिसमें फलन f (x) = 2x3 + 9x2 + 12x – 1 हासमान है,


sin x . cos x का उच्चतम मान है ______


वक् y = –x3 + 3x2 + 9x – 27 की उच्चतम प्रवणता ______


वक् y = 4x2 + 2x – 8 तथा, y = x3 – x + 13 एक दूसरे को बिंदु ______ पर स्पर्श करते हैं।


वक्र y = tanx के (0, 0) पर अभिलंब का समीकरण ______ है।


फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×