English

सिद्ध कीजिए कि f (x) = 2x + cot–1x + log (1+x2-x), R में वर्धमान फलन है। - Mathematics (गणित)

Advertisements
Advertisements

Question

सिद्ध कीजिए कि f (x) = 2x + cot–1x + log `(sqrt(1+x^2) - x)`, R में वर्धमान फलन है।

Sum

Solution

दिया है कि f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)`

दोनों पक्षों में अंतर करना w.r.t. x, हमें मिलता है

f'(x) = `2 - 1/(1 + x^2) + 1/(sqrt(1 + x^2) - x) xx "d"/"dx" (sqrt(1 + x^2) - x)`

= `2 - 1/(1 + x^2) + ((1/(2sqrt(1 + x^2)) xx (2x - 1)))/(sqrt(1 + x^2) - x)`

= `2 - 1/(1 + x^2) + (x - sqrt(1 + x^2))/(sqrt(1 + x^2) (sqrt(1 + x^2 - x))`

= `2 - 1/(1 + x^2) - ((sqrt(1 + x^2) - x))/(sqrt(1 + x^2) (sqrt(1 + x^2) - x))`

= `2 - 1/(1 + x^2) - 1/sqrt(1 + x^2)`

फलन बढ़ाने के लिए, f '(x) ≥ 0

∴ `2 - 1/(1 + x^2) - 1/sqrt(1 + x^2) ≥ 0`

⇒ `(2(1 + x^2) - 1 + sqrt(1 + x^2))/((1 + x^2)) ≥ 0`

⇒ `2 + 2x^2 - 1 + sqrt(1 + x^2) ≥ 0`

⇒ `2x^2 + 1 + sqrt(1 + x^2) ≥ 0`

⇒ `2x^2 + 1 ≥ - sqrt(1 + x^2)`

दोनों पक्षों का वर्ग करने पर, हमें 4x4 + 1 + 4x2 ≥ 1 + xप्राप्त होता है

⇒ 4x4 + 4x2 – x2 ≥ 0

⇒ 4x4 + 3x2 ≥ 0

⇒ x2(4x2 + 3) ≥ 0

जो x ∈ R के किसी भी मान के लिए सत्य है।

इसलिए, दिया गया फलन R के ऊपर बढ़ता हुआ फलन है।

shaalaa.com
अवकलज के अनुप्रयोग
  Is there an error in this question or solution?
Chapter 6: अवकलज के अनुप्रयोग - प्रश्नावली [Page 134]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 20 | Page 134

RELATED QUESTIONS

दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 = 2


समीकरण x = et . cost, y = et . sint द्वारा प्रदत्त वक्र की t = `pi/4` पर स्पर्श रेखा, x-अक्ष से कोण बनाती है।


वक्र y = sinx के बिंदु (0, 0) पर अभिलंब का समीकरण:


वक्र y2 = x पर वह बिंदु जहाँ स्पर्श रेखा x-अक्ष से `pi/4` कोण बनाती है।


नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।


एक पतंग 151.5 cm की ऊंचाई पर क्षैतिज दिशा में गतिमान है। यदि पतंग की चाल 10 m/s है, तो डोरी को कितनी तेजी से छोड़ा जा रहा है, जब उसकी दूरी पतंग उड़ाने वाले लड़के से 250 cm है? लड़के की ऊंचाई 1.5 m है।


कोण θ, 0 < θ < `π/2`, ज्ञात कीजिए जो अपने sine से दोगुनी तेजी से बढ़ता है।


2m लंबा एक मनुष्य 1`2/3` m/s की दर से किसी बिजली के खंभे की ओर, जो जमीन से 5`1/3`m ऊपर है, चल रहा है। उसकी छाया का अग्रभाग किसी दर से गतिमान है? उसकी छाया की लंबाई, उस समय किस दर से परिवर्तित हो रही है, जब वह प्रकाश के स्रोत के आधार से 3`1/3`m दूर है?


किसी तरनताल को सफाई के लिए खाली करना है।यदि ताल को बंद करने के t seconds बाद ताल में पानी की मात्रा, लिटर में, L से निरूपित होती है तथा L = 200 (10 – t)2 तो 5 seconds में अंत में पानी कितनी तेजी से बाहर निकल रहा है? प्रथम 5 seconds में पानी के बाहर निकलने की औसत दर क्या है?


किसी घन का आयतन एक अचर दर से बढ़ रहा है। सिद्ध कीजिए कि उसके पृष्ठीय क्षेत्रफल की वृद्धि उसकी भुजा की व्युत्क्रमानुपाती है।


वक्र `sqrt(x) + sqrt(y) = 4` उस बिंदु के निर्देशांक ज्ञात कीजिए, जिस पर स्पर्श रेखा का अक्षों से झुकाव समान है।


यदि किसी समकोण त्रिभुज की एक भुजा तथा कर्ण की लंबाईयों का योगफल दिया हुआ है, तो सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल उच्चतम है, जब उनके मध्य का कोण `pi/3` है।


फलन f (x) = x5 – 5x4 + 5x3 – 1 के स्थानीय उच्चिष्ठ, स्थानीय निम्निष्ठ तथा नति परिवर्तन के बिंदुओं को ज्ञात कीजिए। साथ ही संगत स्थानीय उच्चतम तथा स्थानीय निम्नतम मानों को भी ज्ञात कीजिए।


c2 क्षेत्रफल के किसी दिए हुए गत्ते से वर्गाकार आधार का एक खुला हुआ बाक्स बनाना है। सिद्ध कीजिए कि बाक्स का महत्तम आयतन `c^3/(6sqrt3)` घन इकाई है।


AB किसी वृत्त का एक व्यास है तथा C उसकी परिधि पर कोई बिंदु है। सिद्ध कीजिए कि ∆ ABC का क्षेत्रफल महत्तम उस समय होगा जब वह समद्धिबाहु है।


किसी समबाहु त्रिभुज की भुजाएँ  2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।


एक क्षैतिज फर्श पर 5 मीटर लंबी एक सीढ़ी किसी ऊर्ध्वाधर दीवार पर झुकी है।यदि सीढ़ी का ऊपरी सिरा 10 cm/sec, की दर से नीचे की ओर फिसल रहा है तो सीढ़ी तथा फर्श के बीच का कोण, उस समय जब सीढ़ी का निचला सिरा दीवार से 2 मीटर दूर है:


रेखा x + 3y = 8  के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।


वे बिंदु, जिन पर वक्र y = x3 – 12x + 18 की स्पर्श रेखाएँ x-अक्ष के समांतर हैं,


वक्र y = e2x की, बिंदु (0, 1) पर, स्पर्श रेखा x-अक्ष से बिंदु  ______


वक्र x = t2 + 3t – 8, y = 2t2 – 2t – 5 की, बिंदु (2, -1) पर, स्पर्श रेखा की प्रवणता ______ है।


 वह अंतराल, जिसमें फलन f (x) = 2x3 + 9x2 + 12x – 1 हासमान है,


फलन f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 ______


 f(x) = xx  का स्तब्ध बिंदु है ______


a के वे मान जिनके लिए फलन f (x) = sinx – ax + b, R में वर्धमान है ______ .हैं।


फलन f(x) = `"a"x + "b"/x` (a > 0, b > 0, x > 0) का निम्नतम मान ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×