Advertisements
Advertisements
Question
वक्र `sqrt(x) + sqrt(y) = 4` उस बिंदु के निर्देशांक ज्ञात कीजिए, जिस पर स्पर्श रेखा का अक्षों से झुकाव समान है।
Solution
वक्र का समीकरण `sqrt(x) + sqrt(y)` = 4 द्वारा दिया जाता है
माना (x1, y1) वक्र पर वांछित बिंदु है
∴ `sqrt(x)_1 + sqrt(y)_1` = 4
दोनों पक्षों में अंतर करना w.r.t. x1, हमें मिलता है
`"d"/("dx"_1) sqrt(x_1) + "d"/("dx"_1) sqrt(y_1) = "d"/("dx"_1) (4)`
⇒ `1/(2sqrt(x_1)) + 1/(2sqrt(y_1)) * ("d"y_1)/("dx"_1)` = 0
⇒ `1/sqrt(x_1) + 1/sqrt(y_1) * ("dy"_1)/("dx"_1)` = 0
⇒ `("dy"_1)/("d"x_1) = - sqrt(y_1)/sqrt(x_1)` .....(i)
क्योंकि (x1, y1) पर दिए गए वक्र की स्पर्श रेखा समान रूप से झुकी होती है।
∴ स्पर्श रेखा का ढाल `("dy"_1)/("dx"_1) = +- tan pi/4` = ±1
अतः समीकरण (i) से हमें प्राप्त होता है
`- sqrt(y_1)/sqrt(x_1)` = ±1
दोनों पक्षों का वर्ग करने पर, हम प्राप्त करते हैं
`(y_1)/(x_1)` = 1
⇒ y1 = x1
दिए गए वक्र के समीकरण में y1 का मान रखने पर।
`sqrt(x_1) + sqrt(y_1)` = 4
⇒ `sqrt(x_1) + sqrt(x_1)` = 4
⇒ `2sqrt(x_1)` = 4
⇒ `sqrt(x_1)` = 2
⇒ x1 = 4
तब से y1 = x1
∴ y1 = 4
अतः अभीष्ट बिंदु (4, 4) है।
APPEARS IN
RELATED QUESTIONS
अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।
(33)-1/5
सिद्ध कीजिए कि फलन f(x) = tanx – 4x अंतराल `((-pi)/3, pi/3)` निरंतर हासमान है।
सिद्ध कीजिए कि फलन f(x) = 4x3 – 18x2 + 27x – 7 का कोई उच्चिष्ठ अथवा निम्निष्ठ नहीं है।
अवकलों के प्रयोग द्वारा `sqrt(0.082)` का सन्निकट मान ज्ञात कीजिए।
वक्रों `x^2/"a"^2 - y^2/"b"^2` = 1 तथा xy = c2 के लम्बकोणीय प्रतिच्छेदन के लिए प्रतिबंध ज्ञात कीजिए।
किसी शांकवीय बर्तन के शीर्ष के एक छोटे छिद्र से, जिसका अक्ष ऊर्घ्वाधर है, पानी 1 cu cm/sec की दर से बह रहा है। बर्तन में पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब तिर्यक ऊँचाई 4 cm हैं। शांकवीय बर्तन का शीर्ष कोण `pi/6` है।
दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 = 2
समीकरण x = et . cost, y = et . sint द्वारा प्रदत्त वक्र की t = `pi/4` पर स्पर्श रेखा, x-अक्ष से कोण बनाती है।
यदि f (x) = sinx तो अंतराल `[(-pi)/2, pi/2]` में f का निम्निष्ठ मान ______ है।
(1.999)5 का सन्निकट मान ज्ञात कीजिए।
x तथा y दो वर्गों की भुजाएँ हैं, इस प्रकार कि y = x – x2 दूसरे वर्ग के क्षेत्रफल में परिवर्तनकी दर पहले वर्ग के क्षेत्रफल के सापेक्ष ज्ञात कीजिए।
सिद्ध कीजिए कि वक्र xy = 4 तथा x2 + y2 = 8, एक दूसरे को स्पर्श करते हैं।
वक्र y = 4 – x2 तथा y = x2 का प्रतिच्छेद-कोण ज्ञात कीजिए।
वक्र 3x2 – y2 = 8 के उन अभिलम्ब रेखाओं के समीकरण ज्ञात कीजिए, जो रेखा x + 3y = 4 के समांतर हैं।
वक्र x2 + y2 – 2x – 4y + 1 = 0 के किन बिंदुओं पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।
सिद्ध किजिए कि f (x) = tan–1(sinx + cosx), अतंराल 0,`pi/4` में एक वर्धमान फलन है।
यदि सरल रेखा x cosα + y sinα = p वक्र `x^2/"a"^2 + y^2/"b"^2` = 1 को स्पर्श करती है, तो सिद्ध कीजिए कि a2 cos2α + b2 sin2α = p2
c2 क्षेत्रफल के किसी दिए हुए गत्ते से वर्गाकार आधार का एक खुला हुआ बाक्स बनाना है। सिद्ध कीजिए कि बाक्स का महत्तम आयतन `c^3/(6sqrt3)` घन इकाई है।
यदि किसी घन तथा गोले के पृष्ठीय क्षेत्रफल का योगफल अचर है तो घन के एक कोर (edge) तथा गोले के व्यास का अनुपात उस समय क्या है जब उनके आयतन का योगफल निम्नतम है?
वर्गाकार आधार तथा ऊर्ध्वाधर पृष्ठ वाले धातु के किसी बाक्स में 1024 cm3 वस्तु आती है। शीर्ष तथा आधार के पृष्ठों के माल (वस्तु) का मूल्य Rs 5/cm2 है तथा पृष्ठों के मान का मूल्य Rs 2.50/cm2 हैं। बाक्स का निम्नतम मूल्य ज्ञात कीजिए।
रेखा x + 3y = 8 के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।
वे बिंदु, जिन पर वक्र y = x3 – 12x + 18 की स्पर्श रेखाएँ x-अक्ष के समांतर हैं,
वक्र x = t2 + 3t – 8, y = 2t2 – 2t – 5 की, बिंदु (2, -1) पर, स्पर्श रेखा की प्रवणता ______ है।
y = x(x – 3)2, x के नीचे दिए हुए मानों के लिए हासमान है,
फलन f (x) = 2x3 – 3x2 – 12x + 4 के ______