Advertisements
Advertisements
प्रश्न
वक्र `sqrt(x) + sqrt(y) = 4` उस बिंदु के निर्देशांक ज्ञात कीजिए, जिस पर स्पर्श रेखा का अक्षों से झुकाव समान है।
उत्तर
वक्र का समीकरण `sqrt(x) + sqrt(y)` = 4 द्वारा दिया जाता है
माना (x1, y1) वक्र पर वांछित बिंदु है
∴ `sqrt(x)_1 + sqrt(y)_1` = 4
दोनों पक्षों में अंतर करना w.r.t. x1, हमें मिलता है
`"d"/("dx"_1) sqrt(x_1) + "d"/("dx"_1) sqrt(y_1) = "d"/("dx"_1) (4)`
⇒ `1/(2sqrt(x_1)) + 1/(2sqrt(y_1)) * ("d"y_1)/("dx"_1)` = 0
⇒ `1/sqrt(x_1) + 1/sqrt(y_1) * ("dy"_1)/("dx"_1)` = 0
⇒ `("dy"_1)/("d"x_1) = - sqrt(y_1)/sqrt(x_1)` .....(i)
क्योंकि (x1, y1) पर दिए गए वक्र की स्पर्श रेखा समान रूप से झुकी होती है।
∴ स्पर्श रेखा का ढाल `("dy"_1)/("dx"_1) = +- tan pi/4` = ±1
अतः समीकरण (i) से हमें प्राप्त होता है
`- sqrt(y_1)/sqrt(x_1)` = ±1
दोनों पक्षों का वर्ग करने पर, हम प्राप्त करते हैं
`(y_1)/(x_1)` = 1
⇒ y1 = x1
दिए गए वक्र के समीकरण में y1 का मान रखने पर।
`sqrt(x_1) + sqrt(y_1)` = 4
⇒ `sqrt(x_1) + sqrt(x_1)` = 4
⇒ `2sqrt(x_1)` = 4
⇒ `sqrt(x_1)` = 2
⇒ x1 = 4
तब से y1 = x1
∴ y1 = 4
अतः अभीष्ट बिंदु (4, 4) है।
APPEARS IN
संबंधित प्रश्न
अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।
(33)-1/5
वक्र y2 = 4ax तथा x2 = 4by का प्रतिच्छेद कोण ज्ञात कीजिए।
सिद्ध कीजिए कि वक्र x = 3cos θ – cos3θ, y = 3sinθ – sin3θ के किसी बिंदु पर अभिंलब का समीकरण 4 (y cos3θ – x sin3θ) = 3 sin 4θ
समीकरण x = et . cost, y = et . sint द्वारा प्रदत्त वक्र की t = `pi/4` पर स्पर्श रेखा, x-अक्ष से कोण बनाती है।
यदि किसी वृत्त का क्षेत्रफल एक समान दर से बढ़ता है, तो सिद्ध कीजिए कि उसका परिमाप (परिधि) उसकी त्रिज्या के व्युत्क्रमानुपाती होता है
एक पतंग 151.5 cm की ऊंचाई पर क्षैतिज दिशा में गतिमान है। यदि पतंग की चाल 10 m/s है, तो डोरी को कितनी तेजी से छोड़ा जा रहा है, जब उसकी दूरी पतंग उड़ाने वाले लड़के से 250 cm है? लड़के की ऊंचाई 1.5 m है।
एक दूसरे से 45° पर झुकी हुई दो सड़कों के संधि-स्थल से दो मनुष्य A तथा B, एक ही समय v वेग से चलना प्रारम्भ करते हैं। यदि वे अलग-अलग सड़कों पर चलते हैं तो उनके परस्पर एक दूसरे से अलग होने की दर ज्ञात कीजिए।
वक्र 2x = y2 तथा 2xy = k के लंबकोणीय प्रतिच्छेद के लिए प्रतिबंध ज्ञात कीजिए।
सिद्ध किजिए कि f (x) = tan–1(sinx + cosx), अतंराल 0,`pi/4` में एक वर्धमान फलन है।
किसी नगर में एक टेलीफोन कंपनी की सूची में 500 ग्राहक हैं और वह प्रत्येक ग्राहक से प्रतिवर्ष 300 रु निश्चित शुल्क वसूलती हैं। कंपनी वार्षिक शुल्क बढ़ाना चाहती है, और ऐसा माना जाता है कि प्रत्येक 1 रु की वृद्धि करने पर एक ग्राहक टेलीफोन सेवा लेना समाप्त कर देगा।ज्ञात कीजिए कि कितनी वृद्धि करने से महत्तम (उच्चतम) लाभ होगा।
यदि सरल रेखा x cosα + y sinα = p वक्र `x^2/"a"^2 + y^2/"b"^2` = 1 को स्पर्श करती है, तो सिद्ध कीजिए कि a2 cos2α + b2 sin2α = p2
यदि किसी घन तथा गोले के पृष्ठीय क्षेत्रफल का योगफल अचर है तो घन के एक कोर (edge) तथा गोले के व्यास का अनुपात उस समय क्या है जब उनके आयतन का योगफल निम्नतम है?
AB किसी वृत्त का एक व्यास है तथा C उसकी परिधि पर कोई बिंदु है। सिद्ध कीजिए कि ∆ ABC का क्षेत्रफल महत्तम उस समय होगा जब वह समद्धिबाहु है।
भुजा x, 2x और `x/3` किसी आयताकार समांतर षट्फलक तथा एक गोले के पृष्ठीय क्षेत्रफल का योगफल अचर दिया हुआ है। सिद्ध कीजिए कि उनके आयतन का योगफल निम्नतम होगा, यदि x गोले की त्रिज्या के तीन गुने के बराबर है। उनके आयतन के योगफल का निम्नतम मान भी ज्ञात कीजिए।
किसी समबाहु त्रिभुज की भुजाएँ 2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।
यदि वक्र ay + x2 = 7 तथा x3 = y बिंदु (1, 1) पर लंबवत काटते हैं, तो a का मान है ______
वक्र y (1 + x2 ) = 2 – x के, उस बिंदु पर, जहाँ यह x-अक्ष को काटती है, स्पर्श रेखा का समीकरण ______
वक्र y = e2x की, बिंदु (0, 1) पर, स्पर्श रेखा x-अक्ष से बिंदु ______
फलन f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 ______
फलन f(x) = tanx – x ______
यदि x एक वास्तविक संख्या है, तो x2 – 8x + 17 का निम्नतम मान ______
फलन f (x) = 2x3 – 3x2 – 12x + 4 के ______
sin x . cos x का उच्चतम मान है ______
`(1/x)^x`का उच्चतम मान है ______