Advertisements
Advertisements
प्रश्न
वक्र y2 = 4ax तथा x2 = 4by का प्रतिच्छेद कोण ज्ञात कीजिए।
उत्तर
दिया हुआ है कि y2 = 4ax .....
(i) तथा x2 = 4by .....(ii). हल करने पर
`(x^2/(4"b"))^2` = 4ax
⇒ x4 = 64 ab2x
या x(x3 – 64 ab2) = 0
⇒ x = 0, x = `4"a"^(1/3) "b"^(2/3)`
अतः (0, 0) तथा `(4"a"^(1/3) "b"^(2/3), 4"a"^(2/3)"b"^(1/3))` प्रतिच्छेद बिंदु हैं।
पुन:, y2 = 4ax
⇒ `"dy"/"dx" = (4"a")/"dx" = (2"a")/y` तथा x2 = 4by
⇒ `"dy"/"dx" = (2x)/(4"b") = x/(2"b")`
इसलिए, (0, 0) पर वक्र y2 = 4ax की स्पर्श रेखा y-अक्ष के समांतर है, तथा वक्र x2 = 4by की स्पर्श रेखा x-अक्ष के समांतर है।
⇒ कक्रों के बीच का कोण = `pi/2`
`(4"a"^(1/3)"b"^(2/3), 4"a"^(2/3)"b"^(1/3))` पर, m1 ......(वक्र (i) की स्पर्श रेखा की प्रवणता)
= `2("a"/"b")^(1/3)`
= `(2"a")/(4"a"^(2/3)"b"^(1/3))`
= `1/2("a"/"b")^(1/3)` तथा, m2 ....(वक्र (ii) की स्पर्श रेखा की प्रवणता)
= `(4"a"^(1/3)"b"^(2/3))/(2"b")`
= `2("a"/"b")^(1/3)`
इसलिए, tan θ = `|("m"_2 - "m"_3)/(1 + "m"_1 "m"_2)|`
= `|(2("a"/"b")^(1/3) - 1/2("a"/"b")^(1/3))/(1 + 2("a"/"b")^(1/3) 1/2("a"/"b")^(1/3))|`
= `(3"a"^(1/3) . "b"^(1/3))/(2("a"^(2/3) + "b"^(2/3))`
अतः, θ = `tan^-1((3"a"^(1/3) . "b"^(1/3))/(2("a"^(2/3) + "b"^(2/3))))`
APPEARS IN
संबंधित प्रश्न
अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।
`(17/81)^(1/4)`
सिद्ध कीजिए कि फलन f(x) = tanx – 4x अंतराल `((-pi)/3, pi/3)` निरंतर हासमान है।
निर्धारित कीजिए कि x के किन मानों के लिए, फलन y = `x^4 – (4x^3)/3` वर्धमान है तथा किन मानों के लिए, यह हासमान है।
वक्रों `x^2/"a"^2 - y^2/"b"^2` = 1 तथा xy = c2 के लम्बकोणीय प्रतिच्छेदन के लिए प्रतिबंध ज्ञात कीजिए।
वक्र y = cos (x + y), –2π ≤ x ≤ 2π, की उन सभी स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा x + 2y = 0 के समांतर हैं।
समीकरण x = et . cost, y = et . sint द्वारा प्रदत्त वक्र की t = `pi/4` पर स्पर्श रेखा, x-अक्ष से कोण बनाती है।
वक्र y2 = x पर वह बिंदु जहाँ स्पर्श रेखा x-अक्ष से `pi/4` कोण बनाती है।
यदि f (x) = `1/(4x^2 + 2x + 1)`, तो इसका उच्चतम मान ______ है।
किसी गोले के आयतन के परिवर्तन की दर उसके पृष्ठीय क्षेत्रफल के सापेक्ष, जब उसकी त्रिज्या 2cm है, ______ है।
नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।
यदि किसी वृत्त का क्षेत्रफल एक समान दर से बढ़ता है, तो सिद्ध कीजिए कि उसका परिमाप (परिधि) उसकी त्रिज्या के व्युत्क्रमानुपाती होता है
वक्र 2x = y2 तथा 2xy = k के लंबकोणीय प्रतिच्छेद के लिए प्रतिबंध ज्ञात कीजिए।
सिद्ध कीजिए कि f (x) = sinx + `sqrt3` cosx का उच्चिष्ठ मान x = `pi/6` पर है।
किसी नगर में एक टेलीफोन कंपनी की सूची में 500 ग्राहक हैं और वह प्रत्येक ग्राहक से प्रतिवर्ष 300 रु निश्चित शुल्क वसूलती हैं। कंपनी वार्षिक शुल्क बढ़ाना चाहती है, और ऐसा माना जाता है कि प्रत्येक 1 रु की वृद्धि करने पर एक ग्राहक टेलीफोन सेवा लेना समाप्त कर देगा।ज्ञात कीजिए कि कितनी वृद्धि करने से महत्तम (उच्चतम) लाभ होगा।
यदि सरल रेखा x cosα + y sinα = p वक्र `x^2/"a"^2 + y^2/"b"^2` = 1 को स्पर्श करती है, तो सिद्ध कीजिए कि a2 cos2α + b2 sin2α = p2
c2 क्षेत्रफल के किसी दिए हुए गत्ते से वर्गाकार आधार का एक खुला हुआ बाक्स बनाना है। सिद्ध कीजिए कि बाक्स का महत्तम आयतन `c^3/(6sqrt3)` घन इकाई है।
किसी समबाहु त्रिभुज की भुजाएँ 2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।
रेखा x + 3y = 8 के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।
यदि वक्र ay + x2 = 7 तथा x3 = y बिंदु (1, 1) पर लंबवत काटते हैं, तो a का मान है ______
वे बिंदु, जिन पर वक्र y = x3 – 12x + 18 की स्पर्श रेखाएँ x-अक्ष के समांतर हैं,
दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 – 2 = 0 किस कोण पर प्रतिच्छेद करते हैं:
मान लीजिए कि f : R → R, f (x) = 2x + cosx द्वारा परिभाषित है, तो f ______
y = x(x – 3)2, x के नीचे दिए हुए मानों के लिए हासमान है,
फलन f(x) = tanx – x ______
फलन f (x) = 2x3 – 3x2 – 12x + 4 के ______
f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______
`(1/x)^x`का उच्चतम मान है ______
a के वे मान जिनके लिए फलन f (x) = sinx – ax + b, R में वर्धमान है ______ .हैं।