मराठी

वक्र y2 = 4ax तथा x2 = 4by का प्रतिच्छेद कोण ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

वक्र y2 = 4ax तथा x2 = 4by का प्रतिच्छेद कोण ज्ञात कीजिए।

बेरीज

उत्तर

दिया हुआ है कि  y2 = 4ax  .....

(i) तथा x2 = 4by  .....(ii). हल करने पर

`(x^2/(4"b"))^2` = 4ax

⇒ x4 = 64 ab2x

या x(x3 – 64 ab2) = 0

⇒ x = 0, x = `4"a"^(1/3) "b"^(2/3)`

अतः (0, 0) तथा `(4"a"^(1/3) "b"^(2/3), 4"a"^(2/3)"b"^(1/3))` प्रतिच्छेद बिंदु हैं।

पुन:, y2 = 4ax

⇒ `"dy"/"dx" = (4"a")/"dx" = (2"a")/y` तथा x2 = 4by

⇒ `"dy"/"dx" = (2x)/(4"b") = x/(2"b")`

इसलिए, (0, 0) पर वक्र y2 = 4ax की स्पर्श रेखा y-अक्ष के समांतर है, तथा वक्र x2 = 4by की स्पर्श रेखा x-अक्ष के समांतर है।

⇒  कक्रों के बीच का कोण = `pi/2`

`(4"a"^(1/3)"b"^(2/3), 4"a"^(2/3)"b"^(1/3))` पर, m1  ......(वक्र (i) की स्पर्श रेखा की प्रवणता)

= `2("a"/"b")^(1/3)`

= `(2"a")/(4"a"^(2/3)"b"^(1/3))`

= `1/2("a"/"b")^(1/3)` तथा, m2  ....(वक्र (ii) की स्पर्श रेखा की प्रवणता)

= `(4"a"^(1/3)"b"^(2/3))/(2"b")`

= `2("a"/"b")^(1/3)`

इसलिए, tan θ = `|("m"_2 - "m"_3)/(1 + "m"_1 "m"_2)|`

= `|(2("a"/"b")^(1/3) - 1/2("a"/"b")^(1/3))/(1 + 2("a"/"b")^(1/3)  1/2("a"/"b")^(1/3))|`

= `(3"a"^(1/3) . "b"^(1/3))/(2("a"^(2/3) + "b"^(2/3))`

अतः, θ = `tan^-1((3"a"^(1/3) . "b"^(1/3))/(2("a"^(2/3) + "b"^(2/3))))`

shaalaa.com
अवकलज के अनुप्रयोग
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: अवकलज के अनुप्रयोग - हल किए हुए उदाहरण [पृष्ठ १२४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 6 अवकलज के अनुप्रयोग
हल किए हुए उदाहरण | Q 13 | पृष्ठ १२४

संबंधित प्रश्‍न

अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।

`(17/81)^(1/4)`


अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।

(33)-1/5


`pi/4` अर्ध शीर्ष कोण वाले एक शांकवीय कीप (funnel) से, जिसकां शीर्ष नीचे की ओर है, कीप के पृष्ठ के क्षेत्रफल में 2cm2/sec की समान दर से उसके शीर्ष के एक छिद्र से पानी बह रहा है। पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब उसकी तिर्यंक ऊँचाई 4cm है।


वक्र y2 = x तथा x2 = y के बीच का प्रतिच्छेद - कोण ज्ञात कीजिए।


सिद्ध कीजिए कि फलन f(x) = 4x3 – 18x2 + 27x – 7 का कोई उच्चिष्ठ अथवा निम्निष्ठ नहीं है।


वक्र y = cos (x + y), –2π ≤ x ≤ 2π, की उन सभी स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा x + 2y = 0 के समांतर हैं।


सिद्ध कीजिए कि वक्र x = 3cos θ – cos3θ, y = 3sinθ – sin3θ के किसी बिंदु पर अभिंलब का समीकरण 4 (y cos3θ – x sin3θ) = 3 sin 4θ 


शीर्ष कोण `2theta` वाला एक समद्धिबाहु त्रिभुज a त्रिज्या वाले किसी वृत्त के अंतर्गत स्थित है। सिद्ध कीजिए कि त्रिभुजं का क्षेत्रफल उच्चतम है। जब `theta = pi/6`


वक्र `3"y" = 6"x"  –  5"x"^3` पर स्थित उस बिंदु का भुज, जिस पर वक्र का अभिलंब मूल बिंदुसे होकर जाता है।


वक्र y2 = x पर वह बिंदु जहाँ स्पर्श रेखा x-अक्ष से `pi/4` कोण बनाती है।


a के वे मान जिनके लिए y = x2 + ax + 25 x-अक्ष को स्पर्श करता है, ______ है।


मान लीजिए कि c पर f का द्वितीय अवकलज है, इस प्रकार कि f ′(c) = 0 तथा f ″(c) > 0, तो c पर फलन ______ है।


नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।


किसी तरनताल को सफाई के लिए खाली करना है।यदि ताल को बंद करने के t seconds बाद ताल में पानी की मात्रा, लिटर में, L से निरूपित होती है तथा L = 200 (10 – t)2 तो 5 seconds में अंत में पानी कितनी तेजी से बाहर निकल रहा है? प्रथम 5 seconds में पानी के बाहर निकलने की औसत दर क्या है?


x तथा y दो वर्गों की भुजाएँ हैं, इस प्रकार कि y = x – x2 दूसरे वर्ग के क्षेत्रफल में परिवर्तनकी दर पहले वर्ग के क्षेत्रफल के सापेक्ष ज्ञात कीजिए।


सिद्ध कीजिए कि रेखा `x/"a" +y/"b"` = 1 , वक्र y = b . e-x/a को उस बिंदु पर स्पर्श करती है जिस पर वक्र y-अक्ष को काटता है।


सिद्ध किजिए कि f (x) = tan–1(sinx + cosx), अतंराल 0,`pi/4` में एक वर्धमान फलन है।


यदि सरल रेखा x cosα + y sinα = p वक्र `x^2/"a"^2 + y^2/"b"^2` = 1 को स्पर्श करती है, तो सिद्ध कीजिए कि a2 cos2α + b2 sin2α = p2 


यदि किसी घन तथा गोले के पृष्ठीय क्षेत्रफल का योगफल अचर है तो घन के एक कोर (edge) तथा गोले के व्यास का अनुपात उस समय क्या है जब उनके आयतन का योगफल निम्नतम है?


 बिंदु (0, 0) पर वक्र y = `x^(1/5)` की ______


रेखा x + 3y = 8  के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।


यदि वक्र ay + x2 = 7 तथा x3 = y बिंदु (1, 1) पर लंबवत काटते हैं, तो a का मान है   ______


वक्र y = e2x की, बिंदु (0, 1) पर, स्पर्श रेखा x-अक्ष से बिंदु  ______


 f(x) = xx  का स्तब्ध बिंदु है ______


`(1/x)^x`का उच्चतम मान है ______


फलन f(x) = `"a"x + "b"/x` (a > 0, b > 0, x > 0) का निम्नतम मान ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×