हिंदी

यदि वक्र ay + x2 = 7 तथा x3 = y बिंदु (1, 1) पर लंबवत काटते हैं, तो a का मान है ______ - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि वक्र ay + x2 = 7 तथा x3 = y बिंदु (1, 1) पर लंबवत काटते हैं, तो a का मान है   ______

विकल्प

  • 1

  • 0

  • -6

  • 6

MCQ
रिक्त स्थान भरें

उत्तर

यदि वक्र ay + x2 = 7 तथा x3 = y बिंदु (1, 1) पर लंबवत काटते हैं, तो a का मान है 6

व्याख्या:

दिए गए वक्रों के समीकरण हैं ay + x2 = 7  .....(i)

और x3 = y  .....(ii)

विभेदक समीकरण (i) w.r.t. x, हमारे पास है

`"a" "dy"/"dx" + 2x` = 0

⇒ `"dy"/"dx" = - (2x)/"a"`

∴ m1 = `- (2x)/"a"` ......`("m"_1 = "dy"/"dx")`

अब विभेदक समीकरण को अलग करना (ii) w.r.t. x, हमें मिलता है

3x2 = `"dy"/"dx"`

⇒ m2 = `3x^2`  .....`("m"_2 = "dy"/"dx")`

दो वक्रों को लंबकोणीय कहा जाता है यदि प्रतिच्छेदन बिंदु पर स्पर्शरेखाओं के बीच का कोण 90° है।

∴ m1 × m2 = – 1

⇒ `(-2x)/"a" xx 3x^2` = – 1

⇒ `(-6x^3)/"a"` = – 1

⇒ 6x3 = a

(1, 1) दो वक्रों का प्रतिच्छेदन बिंदु है।

∴ 6(1)3 = a

तो a = 6

shaalaa.com
अवकलज के अनुप्रयोग
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: अवकलज के अनुप्रयोग - प्रश्नावली [पृष्ठ १३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 39 | पृष्ठ १३६

संबंधित प्रश्न

अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।

`(17/81)^(1/4)`


वक्र y2 = x तथा x2 = y के बीच का प्रतिच्छेद - कोण ज्ञात कीजिए।


सिद्ध कीजिए कि फलन f(x) = tanx – 4x  अंतराल `((-pi)/3, pi/3)` निरंतर हासमान है।


निर्धारित कीजिए कि x के किन मानों के लिए, फलन y = `x^4 – (4x^3)/3` वर्धमान है तथा किन मानों के लिए, यह हासमान है।


वक्रों `x^2/"a"^2 - y^2/"b"^2` = 1 तथा xy = c2 के लम्बकोणीय प्रतिच्छेदन के लिए प्रतिबंध ज्ञात कीजिए।


फलन f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105` के सभी स्थानीय उच्चिष्ठ तथा स्थानीय निम्निष्ठ बिंदुओं को ज्ञात कीजिए।


उस महत्तम आयत का क्षेत्रफल ज्ञात कीजिए, जो दीर्घवृत्त `x^2/a^2 + y^2/b^2` = 1 के अंतर्गत स्थित है।


अंतराल `[-pi/2, pi/2]` में फलन f (x) = sin2x – x, के उच्चतम तथा निम्नितम मानों का अंतर ज्ञात कीजिए।


यदि f (x) = sinx तो अंतराल `[(-pi)/2, pi/2]` में f का निम्निष्ठ मान ______ है।


किसी गोले के आयतन के परिवर्तन की दर उसके पृष्ठीय क्षेत्रफल के सापेक्ष, जब उसकी त्रिज्या 2cm है, ______ है।


नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।


एक खोखले बेलनाकार खोल, जिसकी आंतरिक तथा बाह्य त्रिज्याएँ क्रमश: 3 cm तथा 3.0005 cm हैं, में धातु के आयतन का सन्निकट मान ज्ञात कीजिए।


x तथा y दो वर्गों की भुजाएँ हैं, इस प्रकार कि y = x – x2 दूसरे वर्ग के क्षेत्रफल में परिवर्तनकी दर पहले वर्ग के क्षेत्रफल के सापेक्ष ज्ञात कीजिए।


वक्र 2x = y2 तथा 2xy = k के लंबकोणीय प्रतिच्छेद के लिए प्रतिबंध ज्ञात कीजिए।


वक्र y = 4 – x2 तथा y = x2 का प्रतिच्छेद-कोण ज्ञात कीजिए।


सिद्ध कीजिए कि f (x) = sinx + `sqrt3` cosx का उच्चिष्ठ मान x = `pi/6` पर है।


किसी नगर में एक टेलीफोन कंपनी की सूची में 500 ग्राहक हैं और वह प्रत्येक ग्राहक से प्रतिवर्ष 300 रु निश्चित शुल्क वसूलती हैं। कंपनी वार्षिक शुल्क बढ़ाना चाहती है, और ऐसा माना जाता है कि प्रत्येक 1 रु की वृद्धि करने पर एक ग्राहक टेलीफोन सेवा लेना समाप्त कर देगा।ज्ञात कीजिए कि कितनी वृद्धि करने से महत्तम (उच्चतम) लाभ होगा।


यदि सरल रेखा x cosα + y sinα = p वक्र `x^2/"a"^2 + y^2/"b"^2` = 1 को स्पर्श करती है, तो सिद्ध कीजिए कि a2 cos2α + b2 sin2α = p2 


AB किसी वृत्त का एक व्यास है तथा C उसकी परिधि पर कोई बिंदु है। सिद्ध कीजिए कि ∆ ABC का क्षेत्रफल महत्तम उस समय होगा जब वह समद्धिबाहु है।


किसी समबाहु त्रिभुज की भुजाएँ  2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।


रेखा x + 3y = 8  के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।


 वह अंतराल, जिसमें फलन f (x) = 2x3 + 9x2 + 12x – 1 हासमान है,


y = x(x – 3)2, x  के नीचे दिए हुए मानों के लिए हासमान है, 


फलन f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 ______


बहुपद x3 – 18x2 + 96x का, अंतराल [0, 9] में, निम्नतम मान ______


फलन f (x) = 2x3 – 3x2 – 12x + 4 के ______


वक्र y = tanx के (0, 0) पर अभिलंब का समीकरण ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×