हिंदी

रेखा x + 3y = 8 के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

रेखा x + 3y = 8  के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।

विकल्प

  • 3x – y = 8

  • 3x + y + 8 = 0

  • x + 3y ± 8 = 0

  • x + 3y = 0

MCQ

उत्तर

सही उत्तर  x + 3y ± 8 = 0 है।

व्याख्या:

दिया गया वक्र का समीकरण 3x2 – y2 = 8 है  ......(i)

दोनों पक्षों में अंतर करना w.r.t. x, हमें मिलता है

`6x - 2y * "dy"/"dx"` = 0

⇒ `"dy"/"dx" = (3x)/y`

`(3x)/y` स्पर्शरेखा का ढाल है

∴ अभिलंब का ढलान = `(-1)/("dy"/"dx") = (-y)/(3x)`

अब x + 3y = 8 अभिलंब के समानांतर है।

दोनों पक्षों में अंतर करना w.r.t. x, हमारे पास है

`1 + 3 "dy"/"dx"` = 0

⇒ `"dy"/"dx" = - 1/3`

∴ `(-y)/(3x) = - 1/3`

⇒ y = x

y = x को समीकरण (i) में रखने पर हमें प्राप्त होता है,

3x2 – x2 = 8

⇒ 2x2 = 8

⇒ x2 = 4

∴  x = ± 2 और y = ± 2

तो अंक (2, 2) और (– 2, – 2) हैं।

(2, 2) पर दिए गए वक्र के अभिलंब का समीकरण है।

y – 2 = `- 1/3(x - 2)`

⇒ 3y – 6 = – x + 2 

⇒ x + 3y – 8 = 0

(– 2, – 2) पर अभिलंब का समीकरण है

y + 2 = `- 1/3 (x + 2)`

⇒ 3y + 6 = – x – 2

⇒ x + 3y + 8 = 0

∴ वक्र के प्रतिमानों के समीकरण x + 3y ± 8 = 0 हैं।

shaalaa.com
अवकलज के अनुप्रयोग
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: अवकलज के अनुप्रयोग - प्रश्नावली [पृष्ठ १३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 38 | पृष्ठ १३६

संबंधित प्रश्न

अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।

`(17/81)^(1/4)`


`pi/4` अर्ध शीर्ष कोण वाले एक शांकवीय कीप (funnel) से, जिसकां शीर्ष नीचे की ओर है, कीप के पृष्ठ के क्षेत्रफल में 2cm2/sec की समान दर से उसके शीर्ष के एक छिद्र से पानी बह रहा है। पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब उसकी तिर्यंक ऊँचाई 4cm है।


वक्र y2 = x तथा x2 = y के बीच का प्रतिच्छेद - कोण ज्ञात कीजिए।


निर्धारित कीजिए कि x के किन मानों के लिए, फलन y = `x^4 – (4x^3)/3` वर्धमान है तथा किन मानों के लिए, यह हासमान है।


सिद्ध कीजिए कि फलन f(x) = 4x3 – 18x2 + 27x – 7 का कोई उच्चिष्ठ अथवा निम्निष्ठ नहीं है।


फलन f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105` के सभी स्थानीय उच्चिष्ठ तथा स्थानीय निम्निष्ठ बिंदुओं को ज्ञात कीजिए।


वक्र `3"y" = 6"x"  –  5"x"^3` पर स्थित उस बिंदु का भुज, जिस पर वक्र का अभिलंब मूल बिंदुसे होकर जाता है।


वक्र y2 = x पर वह बिंदु जहाँ स्पर्श रेखा x-अक्ष से `pi/4` कोण बनाती है।


नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।


नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।


एक पतंग 151.5 cm की ऊंचाई पर क्षैतिज दिशा में गतिमान है। यदि पतंग की चाल 10 m/s है, तो डोरी को कितनी तेजी से छोड़ा जा रहा है, जब उसकी दूरी पतंग उड़ाने वाले लड़के से 250 cm है? लड़के की ऊंचाई 1.5 m है।


एक खोखले बेलनाकार खोल, जिसकी आंतरिक तथा बाह्य त्रिज्याएँ क्रमश: 3 cm तथा 3.0005 cm हैं, में धातु के आयतन का सन्निकट मान ज्ञात कीजिए।


किसी घन का आयतन एक अचर दर से बढ़ रहा है। सिद्ध कीजिए कि उसके पृष्ठीय क्षेत्रफल की वृद्धि उसकी भुजा की व्युत्क्रमानुपाती है।


वक्र 2x = y2 तथा 2xy = k के लंबकोणीय प्रतिच्छेद के लिए प्रतिबंध ज्ञात कीजिए।


सिद्ध कीजिए कि वक्र xy = 4 तथा x2 + y2 = 8, एक दूसरे को स्पर्श करते हैं।


वक्र `sqrt(x) + sqrt(y) = 4` उस बिंदु के निर्देशांक ज्ञात कीजिए, जिस पर स्पर्श रेखा का अक्षों से झुकाव समान है।


वक्र y = 4 – x2 तथा y = x2 का प्रतिच्छेद-कोण ज्ञात कीजिए।


सिद्ध किजिए कि f (x) = tan–1(sinx + cosx), अतंराल 0,`pi/4` में एक वर्धमान फलन है।


AB किसी वृत्त का एक व्यास है तथा C उसकी परिधि पर कोई बिंदु है। सिद्ध कीजिए कि ∆ ABC का क्षेत्रफल महत्तम उस समय होगा जब वह समद्धिबाहु है।


वर्गाकार आधार तथा ऊर्ध्वाधर पृष्ठ वाले धातु के किसी बाक्स में 1024 cm3 वस्तु आती है। शीर्ष तथा आधार के पृष्ठों के माल (वस्तु) का मूल्य Rs 5/cm2 है तथा पृष्ठों के मान का मूल्य Rs 2.50/cm2  हैं। बाक्स का निम्नतम मूल्य ज्ञात कीजिए।


भुजा x, 2x और `x/3` किसी आयताकार समांतर षट्फलक तथा एक गोले के पृष्ठीय क्षेत्रफल का योगफल अचर दिया हुआ है। सिद्ध कीजिए कि उनके आयतन का योगफल निम्नतम होगा, यदि x गोले की त्रिज्या के तीन गुने के बराबर है। उनके आयतन के योगफल का निम्नतम मान भी ज्ञात कीजिए।


किसी समबाहु त्रिभुज की भुजाएँ  2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।


यदि वक्र ay + x2 = 7 तथा x3 = y बिंदु (1, 1) पर लंबवत काटते हैं, तो a का मान है   ______


वे बिंदु, जिन पर वक्र y = x3 – 12x + 18 की स्पर्श रेखाएँ x-अक्ष के समांतर हैं,


मान लीजिए कि f : R → R, f (x) = 2x + cosx द्वारा परिभाषित है, तो f ______


यदि x एक वास्तविक संख्या है, तो x2 – 8x + 17 का निम्नतम मान ______


वक् y = –x3 + 3x2 + 9x – 27 की उच्चतम प्रवणता ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×