हिंदी

यदि सरल रेखा x cosα + y sinα = p वक्र abx2a2+y2b2 = 1 को स्पर्श करती है, तो सिद्ध कीजिए कि a2 cos2α + b2 sin2α = p2 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि सरल रेखा x cosα + y sinα = p वक्र `x^2/"a"^2 + y^2/"b"^2` = 1 को स्पर्श करती है, तो सिद्ध कीजिए कि a2 cos2α + b2 sin2α = p2 

योग

उत्तर

दिया गया वक्र है `x^2/"a"^2 + y^2/"b"^2` = 1   ....(i)

और सीधी रेखा x cos a + y sin a = p

विभेदक समीकरण (i) w.r.t. x, हमें मिलता है

`1/"a"^2 * 2x + 1/"b"^2 * 2y * "dy"/"dx"` = 0

⇒ `x/"a"^2 + y/"b"^2 "dy"/"dx"` = 0

⇒ `"dy"/"dx" = - "b"^2/"a"^2 * x/y`

तो वक्र का ढलान = `(-"b"^2)/"a"^2 * x/y`

अब समीकरण को अलग करना (ii) w.r.t. x, हमारे पास है

`cos alpha + sin alpha * "dy"/"dx"` = 0

∴ `"dy"/"dx" = (- cos alpha)/sinalpha`

= `- cot alpha`

अत: सरल रेखा का ढलान = `- cot alpha`

यदि रेखा वक्र की स्पर्श रेखा है, तो

`(-"b"^2)/"a"^2 * x/y = - cot alpha`

⇒ `x/y = "a"^2/"b"^2 * cot alpha`

⇒ x = `"a"^2/"b"^2 cot alpha * y`

अब समीकरण (ii) से हमारे पास x cos a + y sin a = p है।

⇒ `"a"^2/"b"^2 * cot alpha * y * cos alpha + y sin alpha` = p

⇒ `"a"^2 cot alpha * cos alpha y + "b"^2 sin alpha y = "b"^2"p"`

⇒ `"a"^2 cosalpha/sinalpha * cos alpha y + "b"^2 sin alpha y = "b"^2"p"`

⇒ `"a"^2 cos^2 alpha y + "b"^2 sin^2 alpha y = "b"^2 sin alpha "p"`

⇒ `"a"^2 cos^2 alpha + "b"^2 sin^2 alpha = "b"^2/y * sin alpha * "p"`

⇒ `"a"^2cos^2alpha + "b"^2 sin^2alpha = "p" * "p"`  ....`["क्योंकि" "b"^2/y sin alpha = "p"]`

अत: a2 cos2α + b2 sin2α = p

वैकल्पिक विधि:

हम जानते हैं कि y = mx + c दीर्घवृत्त को स्पर्श करेगा

`x^2/"a"^2 + y^2/"b"^2` = 1 यदि c2 = a2m2 + b2

यहाँ सीधी रेखा का समीकरण x cos α + y sin α = p है और दीर्घवृत्त का समीकरण है `x^2/"a"^2 + y^2/"b"^2` = 1

x cos α + y sin α = p

⇒ y sin α= – x cos α + p

⇒ y = `- x cosalpha/sinalpha + "P"/sinalpha`

⇒ y = `- x cot alpha + "P"/sinalpha`

y = mx + c की तुलना में, हम प्राप्त करते हैं

m = `- cot alpha` और c = `"P"/sinalpha`

तो, स्थिति के अनुसार, हमें c2 = a2m2 + bमिलता है

`"P"^2/(sin^2alpha) = "a"^2(- cot alpha)^2 + "b"^2`

 ⇒ `"P"^2/(sin^2alpha) = ("a"^2 cos^2alpha)/(sin^2alpha) + "b"^2`

⇒ p2 = a2 cos2α + b2 sin2α

अत: a2 cos2α + b2 sin2α = p2

इसलिए साबित हुआ।

shaalaa.com
अवकलज के अनुप्रयोग
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: अवकलज के अनुप्रयोग - प्रश्नावली [पृष्ठ १३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 28 | पृष्ठ १३५

संबंधित प्रश्न

अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।

(33)-1/5


सिद्ध कीजिए कि फलन f(x) = 4x3 – 18x2 + 27x – 7 का कोई उच्चिष्ठ अथवा निम्निष्ठ नहीं है।


फलन f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105` के सभी स्थानीय उच्चिष्ठ तथा स्थानीय निम्निष्ठ बिंदुओं को ज्ञात कीजिए।


अंतराल `[-pi/2, pi/2]` में फलन f (x) = sin2x – x, के उच्चतम तथा निम्नितम मानों का अंतर ज्ञात कीजिए।


यदि किसी वृत्त का क्षेत्रफल एक समान दर से बढ़ता है, तो सिद्ध कीजिए कि उसका परिमाप (परिधि) उसकी त्रिज्या के व्युत्क्रमानुपाती होता है


कोण θ, 0 < θ < `π/2`, ज्ञात कीजिए जो अपने sine से दोगुनी तेजी से बढ़ता है।


(1.999)5 का सन्निकट मान ज्ञात कीजिए।


एक खोखले बेलनाकार खोल, जिसकी आंतरिक तथा बाह्य त्रिज्याएँ क्रमश: 3 cm तथा 3.0005 cm हैं, में धातु के आयतन का सन्निकट मान ज्ञात कीजिए।


2m लंबा एक मनुष्य 1`2/3` m/s की दर से किसी बिजली के खंभे की ओर, जो जमीन से 5`1/3`m ऊपर है, चल रहा है। उसकी छाया का अग्रभाग किसी दर से गतिमान है? उसकी छाया की लंबाई, उस समय किस दर से परिवर्तित हो रही है, जब वह प्रकाश के स्रोत के आधार से 3`1/3`m दूर है?


किसी तरनताल को सफाई के लिए खाली करना है।यदि ताल को बंद करने के t seconds बाद ताल में पानी की मात्रा, लिटर में, L से निरूपित होती है तथा L = 200 (10 – t)2 तो 5 seconds में अंत में पानी कितनी तेजी से बाहर निकल रहा है? प्रथम 5 seconds में पानी के बाहर निकलने की औसत दर क्या है?


किसी घन का आयतन एक अचर दर से बढ़ रहा है। सिद्ध कीजिए कि उसके पृष्ठीय क्षेत्रफल की वृद्धि उसकी भुजा की व्युत्क्रमानुपाती है।


x तथा y दो वर्गों की भुजाएँ हैं, इस प्रकार कि y = x – x2 दूसरे वर्ग के क्षेत्रफल में परिवर्तनकी दर पहले वर्ग के क्षेत्रफल के सापेक्ष ज्ञात कीजिए।


वक्र `sqrt(x) + sqrt(y) = 4` उस बिंदु के निर्देशांक ज्ञात कीजिए, जिस पर स्पर्श रेखा का अक्षों से झुकाव समान है।


वक्र y = 4 – x2 तथा y = x2 का प्रतिच्छेद-कोण ज्ञात कीजिए।


सिद्ध कीजिए कि a ≥ 1 के लिए f (x) = `sqrt3` sinx - cosx - 2ax + b, R में हासमान फलन है।


36 cm परिमाप वाले आयत की विमाएँ ज्ञात कीजिए जिसे उसकी भुजाओं में से किसी एक के चारों ओर घुमाने पर अधिक से अधिक सम्भव आयतन प्रसर्प (sweep) हो।


वर्गाकार आधार तथा ऊर्ध्वाधर पृष्ठ वाले धातु के किसी बाक्स में 1024 cm3 वस्तु आती है। शीर्ष तथा आधार के पृष्ठों के माल (वस्तु) का मूल्य Rs 5/cm2 है तथा पृष्ठों के मान का मूल्य Rs 2.50/cm2  हैं। बाक्स का निम्नतम मूल्य ज्ञात कीजिए।


वक्र y (1 + x2 ) = 2 – x के, उस बिंदु पर, जहाँ यह x-अक्ष को काटती है, स्पर्श रेखा का समीकरण ______


दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 – 2 = 0 किस कोण पर प्रतिच्छेद करते हैं:


फलन f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 ______


निम्नलिखित में से कौन-सा फलन 0, `pi/2` में हासमान है,


sin x . cos x का उच्चतम मान है ______


 f(x) = xx  का स्तब्ध बिंदु है ______


`(1/x)^x`का उच्चतम मान है ______


वक्र y = tanx के (0, 0) पर अभिलंब का समीकरण ______ है।


a के वे मान जिनके लिए फलन f (x) = sinx – ax + b, R में वर्धमान है ______ .हैं।


फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×