हिंदी

F(x) = xx का स्तब्ध बिंदु है ______ - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

 f(x) = xx  का स्तब्ध बिंदु है ______

विकल्प

  • x = e

  • x = `1/"e"`

  • x = 1

  • x = `sqrt("e")`

MCQ
रिक्त स्थान भरें

उत्तर

 f(x) = xx  का स्तब्ध बिंदु है `underline(x = 1/"e")`

व्याख्या:

हमारे पास f(x) = x

दोनों पक्षों का log लेते हुए, हमारे पास है

log f(x) = x log x

दोनों पक्षों में अंतर करना w.r.t. x, हमें मिलता है

`1/("f"(x)) * "f'"(x) = x * 1/x + log x * 1`

⇒ f'(x) = f(x)[1 + log x] = xx[1 + log x]

f'(x) = 0 स्थिर बिंदु ज्ञात करने के लिए,

∴ xx[1 + log x] = 0

xx ≠ 0 ∴ 1 + log x = 0

⇒ log x = – 1

⇒ x = e–1

⇒ x = `1/"e"`

shaalaa.com
अवकलज के अनुप्रयोग
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: अवकलज के अनुप्रयोग - प्रश्नावली [पृष्ठ १३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 58 | पृष्ठ १३९

संबंधित प्रश्न

सिद्ध कीजिए कि f (x) = `(log x)/x` द्वारा प्रदत्त फलन x = e पर उच्चतम है।


वक्र y2 = x तथा x2 = y के बीच का प्रतिच्छेद - कोण ज्ञात कीजिए।


f(x) = secx + log cos2x, 0 < x < 2π का उच्चतम तथा निम्नतम मान ज्ञात कीजिए।


दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 = 2


समीकरण x = et . cost, y = et . sint द्वारा प्रदत्त वक्र की t = `pi/4` पर स्पर्श रेखा, x-अक्ष से कोण बनाती है।


यदि f (x) = `1/(4x^2 + 2x + 1)`, तो इसका उच्चतम मान ______ है।


नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।


कोण θ, 0 < θ < `π/2`, ज्ञात कीजिए जो अपने sine से दोगुनी तेजी से बढ़ता है।


(1.999)5 का सन्निकट मान ज्ञात कीजिए।


एक खोखले बेलनाकार खोल, जिसकी आंतरिक तथा बाह्य त्रिज्याएँ क्रमश: 3 cm तथा 3.0005 cm हैं, में धातु के आयतन का सन्निकट मान ज्ञात कीजिए।


वक्र 2x = y2 तथा 2xy = k के लंबकोणीय प्रतिच्छेद के लिए प्रतिबंध ज्ञात कीजिए।


सिद्ध कीजिए कि वक्र xy = 4 तथा x2 + y2 = 8, एक दूसरे को स्पर्श करते हैं।


वक्र `sqrt(x) + sqrt(y) = 4` उस बिंदु के निर्देशांक ज्ञात कीजिए, जिस पर स्पर्श रेखा का अक्षों से झुकाव समान है।


सिद्ध कीजिए कि f (x) = 2x + cot–1x + log `(sqrt(1+x^2) - x)`, R में वर्धमान फलन है।


यदि किसी समकोण त्रिभुज की एक भुजा तथा कर्ण की लंबाईयों का योगफल दिया हुआ है, तो सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल उच्चतम है, जब उनके मध्य का कोण `pi/3` है।


यदि सरल रेखा x cosα + y sinα = p वक्र `x^2/"a"^2 + y^2/"b"^2` = 1 को स्पर्श करती है, तो सिद्ध कीजिए कि a2 cos2α + b2 sin2α = p2 


c2 क्षेत्रफल के किसी दिए हुए गत्ते से वर्गाकार आधार का एक खुला हुआ बाक्स बनाना है। सिद्ध कीजिए कि बाक्स का महत्तम आयतन `c^3/(6sqrt3)` घन इकाई है।


यदि y = x4 – 10 तथा यदि x, 2 से 1.99 तक परिवर्तित होता है, तो y का परिवर्तन क्या (कितना) है, 


वक्र y = e2x की, बिंदु (0, 1) पर, स्पर्श रेखा x-अक्ष से बिंदु  ______


दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 – 2 = 0 किस कोण पर प्रतिच्छेद करते हैं:


 वह अंतराल, जिसमें फलन f (x) = 2x3 + 9x2 + 12x – 1 हासमान है,


y = x(x – 3)2, x  के नीचे दिए हुए मानों के लिए हासमान है, 


निम्नलिखित में से कौन-सा फलन 0, `pi/2` में हासमान है,


बहुपद x3 – 18x2 + 96x का, अंतराल [0, 9] में, निम्नतम मान ______


फलन f (x) = 2x3 – 3x2 – 12x + 4 के ______


sin x . cos x का उच्चतम मान है ______


वक्र y = tanx के (0, 0) पर अभिलंब का समीकरण ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×