हिंदी

C2 क्षेत्रफल के किसी दिए हुए गत्ते से वर्गाकार आधार का एक खुला हुआ बाक्स बनाना है। सिद्ध कीजिए कि बाक्स का महत्तम आयतन c363 घन इकाई है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

c2 क्षेत्रफल के किसी दिए हुए गत्ते से वर्गाकार आधार का एक खुला हुआ बाक्स बनाना है। सिद्ध कीजिए कि बाक्स का महत्तम आयतन `c^3/(6sqrt3)` घन इकाई है।

योग

उत्तर

मान लीजिए x घनीय खुला बाक्स के वर्गाकार आधार की भुजा की लंबाई है और y इसकी ऊंचाई है।

∴ खुले बाक्स का पृष्ठीय क्षेत्रफल

c2 = x2 + 4xy

⇒ y = `("c"^2 - x^2)/(4x)`  ....(i)

अब बाक्स का आयतन, V = x × x × y

⇒ V = x2y

⇒ V = `x^2(("c"^2 - x^2)/(4x))`

⇒ V = `1/4 ("c"^2x - x^3)`

दोनों पक्षों में अंतर करना w.r.t. x, हमें मिलता है

`"dv"/"dx" = 1/4 ("c"^2 - 3x^2)` ....(ii)

`"dV"/"dx"` = 0 स्थानीय उच्चिष्ठ और स्थानीय निम्निष्ठ के लिए,

∴ `1/4 ("c"^2 - 3x^2)` = 0

⇒ c2 – 3x2 = 0

⇒ x2 = `"c"^2/3`

∴ x = `sqrt("c"^2/3) = "c"/sqrt(3)`

अब पुन: विभेदित समीकरण (ii) w.r.t. x, हमें मिलता है

`("d"^2"V")/("dx"^2) = 1/4 (- 6x)`

= `(-3)/2 * "c"/sqrt(3) < 0`  ...(उच्चिष्ठ)

घनीय बाक्स का आयतन (V) = x2y

= `x^2(("c"^2 - x^2)/4x)`

= `"c"/sqrt(3)[("c"^2 - "c"^2/3)/4]`

= `"c"/sqrt(3) xx (2"c"^2)/(3 xx 4)`

= `"c"^3/(6sqrt(3))`

अतः खुले बाक्स का अधिकतम आयतन `"c"^3/(6sqrt(3))` घन इकाई है।

shaalaa.com
अवकलज के अनुप्रयोग
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: अवकलज के अनुप्रयोग - प्रश्नावली [पृष्ठ १३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 29 | पृष्ठ १३५

संबंधित प्रश्न

अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।

`(17/81)^(1/4)`


वक्र  y = 5x – 2x3 के लिए, यदि x में 2 इकाई/से. की दर से वृद्धि हो रही है, तो x = 3 पर वक्र का प्रावण्य कितनी तीव्रता से परिवर्तित हो रहा है?


फलन f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105` के सभी स्थानीय उच्चिष्ठ तथा स्थानीय निम्निष्ठ बिंदुओं को ज्ञात कीजिए।


दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 = 2


a के वे मान जिनके लिए y = x2 + ax + 25 x-अक्ष को स्पर्श करता है, ______ है।


यदि f (x) = `1/(4x^2 + 2x + 1)`, तो इसका उच्चतम मान ______ है।


sinx + cosx का उच्चिष्ठ मान ______ है।


किसी गोले के आयतन के परिवर्तन की दर उसके पृष्ठीय क्षेत्रफल के सापेक्ष, जब उसकी त्रिज्या 2cm है, ______ है।


नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।


एक दूसरे से 45° पर झुकी हुई दो सड़कों के संधि-स्थल से दो मनुष्य A तथा B, एक ही समय v वेग से चलना प्रारम्भ करते हैं। यदि वे अलग-अलग सड़कों पर चलते हैं तो उनके परस्पर एक दूसरे से अलग होने की दर ज्ञात कीजिए।


एक खोखले बेलनाकार खोल, जिसकी आंतरिक तथा बाह्य त्रिज्याएँ क्रमश: 3 cm तथा 3.0005 cm हैं, में धातु के आयतन का सन्निकट मान ज्ञात कीजिए।


किसी तरनताल को सफाई के लिए खाली करना है।यदि ताल को बंद करने के t seconds बाद ताल में पानी की मात्रा, लिटर में, L से निरूपित होती है तथा L = 200 (10 – t)2 तो 5 seconds में अंत में पानी कितनी तेजी से बाहर निकल रहा है? प्रथम 5 seconds में पानी के बाहर निकलने की औसत दर क्या है?


वक्र 2x = y2 तथा 2xy = k के लंबकोणीय प्रतिच्छेद के लिए प्रतिबंध ज्ञात कीजिए।


वक्र `sqrt(x) + sqrt(y) = 4` उस बिंदु के निर्देशांक ज्ञात कीजिए, जिस पर स्पर्श रेखा का अक्षों से झुकाव समान है।


सिद्ध कीजिए कि वक्र y2 = 4x तथा x2 + y2 – 6x + 1 = 0 एक दूसरे को बिंदु (1, 2) पर स्पर्श करते हैं।


सिद्ध कीजिए कि रेखा `x/"a" +y/"b"` = 1 , वक्र y = b . e-x/a को उस बिंदु पर स्पर्श करती है जिस पर वक्र y-अक्ष को काटता है।


सिद्ध कीजिए कि a ≥ 1 के लिए f (x) = `sqrt3` sinx - cosx - 2ax + b, R में हासमान फलन है।


किस बिंदु पर, वक्र y = – x3 + 3x2 + 9x – 27 की प्रवणता उच्चतम है? उच्चतम प्रवणता भी ज्ञात कीजिए।


किसी समबाहु त्रिभुज की भुजाएँ  2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।


एक क्षैतिज फर्श पर 5 मीटर लंबी एक सीढ़ी किसी ऊर्ध्वाधर दीवार पर झुकी है।यदि सीढ़ी का ऊपरी सिरा 10 cm/sec, की दर से नीचे की ओर फिसल रहा है तो सीढ़ी तथा फर्श के बीच का कोण, उस समय जब सीढ़ी का निचला सिरा दीवार से 2 मीटर दूर है:


 बिंदु (0, 0) पर वक्र y = `x^(1/5)` की ______


वक्र y = e2x की, बिंदु (0, 1) पर, स्पर्श रेखा x-अक्ष से बिंदु  ______


वक्र x = t2 + 3t – 8, y = 2t2 – 2t – 5 की, बिंदु (2, -1) पर, स्पर्श रेखा की प्रवणता ______ है।


f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______


 f(x) = xx  का स्तब्ध बिंदु है ______


वक् y = 4x2 + 2x – 8 तथा, y = x3 – x + 13 एक दूसरे को बिंदु ______ पर स्पर्श करते हैं।


a के वे मान जिनके लिए फलन f (x) = sinx – ax + b, R में वर्धमान है ______ .हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×