Advertisements
Advertisements
प्रश्न
किस बिंदु पर, वक्र y = – x3 + 3x2 + 9x – 27 की प्रवणता उच्चतम है? उच्चतम प्रवणता भी ज्ञात कीजिए।
उत्तर
दिया गया है कि: y = – x3 + 3x2 + 9x – 27
दोनों पक्षों में अंतर करना w.r.t. x,
हमें प्राप्त होता है `"dy"/'dx"` = – 3x2 + 6x + 9
माना वक्र का ढलान `"dy"/"dx"` = Z
∴ z = – 3x2 + 6x + 9
दोनों पक्षों में अंतर करना w.r.t. x,
हमें `"dz"/"dx"` = – 6x + 6 मिलता है
स्थानीय उच्चिष्ठ और स्थानीय निम्निष्ठ के लिए,
`"dz"/"dx"` = 0
∴ – 6x + 6 = 0
⇒ x = 1
⇒ `("d"^2z)/("d"x^2)` = – 6 < 0 उच्चिष्ठ
वक्र y = (– 1)3 + 3(1)2 + 9(1) – 27 के समीकरण में x = 1 रखें
= – 1 + 3 + 9 – 27
= – 16
अधिकतम ढलान = – 3(1)2 + 6(1) + 9 = 12
अतः (1, – 16) वह बिंदु है जिस पर दिए गए वक्र का ढलान अधिकतम और अधिकतम ढलान = 12 है।
APPEARS IN
संबंधित प्रश्न
अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।
`(17/81)^(1/4)`
अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।
(33)-1/5
सिद्ध कीजिए कि f (x) = `(log x)/x` द्वारा प्रदत्त फलन x = e पर उच्चतम है।
सिद्ध कीजिए कि वक्र x = 3cos θ – cos3θ, y = 3sinθ – sin3θ के किसी बिंदु पर अभिंलब का समीकरण 4 (y cos3θ – x sin3θ) = 3 sin 4θ
f(x) = secx + log cos2x, 0 < x < 2π का उच्चतम तथा निम्नतम मान ज्ञात कीजिए।
उस महत्तम आयत का क्षेत्रफल ज्ञात कीजिए, जो दीर्घवृत्त `x^2/a^2 + y^2/b^2` = 1 के अंतर्गत स्थित है।
शीर्ष कोण `2theta` वाला एक समद्धिबाहु त्रिभुज a त्रिज्या वाले किसी वृत्त के अंतर्गत स्थित है। सिद्ध कीजिए कि त्रिभुजं का क्षेत्रफल उच्चतम है। जब `theta = pi/6`
दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 = 2
वक्र y2 = x पर वह बिंदु जहाँ स्पर्श रेखा x-अक्ष से `pi/4` कोण बनाती है।
2m लंबा एक मनुष्य 1`2/3` m/s की दर से किसी बिजली के खंभे की ओर, जो जमीन से 5`1/3`m ऊपर है, चल रहा है। उसकी छाया का अग्रभाग किसी दर से गतिमान है? उसकी छाया की लंबाई, उस समय किस दर से परिवर्तित हो रही है, जब वह प्रकाश के स्रोत के आधार से 3`1/3`m दूर है?
x तथा y दो वर्गों की भुजाएँ हैं, इस प्रकार कि y = x – x2 दूसरे वर्ग के क्षेत्रफल में परिवर्तनकी दर पहले वर्ग के क्षेत्रफल के सापेक्ष ज्ञात कीजिए।
वक्र 2x = y2 तथा 2xy = k के लंबकोणीय प्रतिच्छेद के लिए प्रतिबंध ज्ञात कीजिए।
वक्र y = 4 – x2 तथा y = x2 का प्रतिच्छेद-कोण ज्ञात कीजिए।
वक्र x2 + y2 – 2x – 4y + 1 = 0 के किन बिंदुओं पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।
सिद्ध कीजिए कि f (x) = 2x + cot–1x + log `(sqrt(1+x^2) - x)`, R में वर्धमान फलन है।
सिद्ध किजिए कि f (x) = tan–1(sinx + cosx), अतंराल 0,`pi/4` में एक वर्धमान फलन है।
सिद्ध कीजिए कि f (x) = sinx + `sqrt3` cosx का उच्चिष्ठ मान x = `pi/6` पर है।
बिंदु (0, 0) पर वक्र y = `x^(1/5)` की ______
वह अंतराल, जिसमें फलन f (x) = 2x3 + 9x2 + 12x – 1 हासमान है,
फलन f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 ______
निम्नलिखित में से कौन-सा फलन 0, `pi/2` में हासमान है,
बहुपद x3 – 18x2 + 96x का, अंतराल [0, 9] में, निम्नतम मान ______
f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______
`(1/x)^x`का उच्चतम मान है ______
फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।