हिंदी

वक्र x2 + y2 – 2x – 4y + 1 = 0 के किन बिंदुओं पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

वक्र x2 + y2 – 2x – 4y + 1 = 0 के किन बिंदुओं पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।

योग

उत्तर

दिया गया है कि वक्र का समीकरण है

x2 + y2 – 2x – 4y + 1 = 0  ....(i)

दोनों पक्षों में अंतर करना w.r.t. x, हमारे पास है

`2x + 2y * "dy"/"dx" - 2 - 4 * "dy"/"dx"` = 0

⇒ `(2y - 4) "dy"/"dx"` = 2 – 2x

⇒ `"dy"/"dx" = (2 - 2x)/(2y - 4)`  ....(ii)

क्योंकि वक्र की स्पर्श रेखा y-अक्ष के समांतर होती है।

∴ प्रवणता `"dy"/"dx" = tan  pi/2`

= `oo`

= `1/0`

अतः समीकरण (ii) से हमें प्राप्त होता है

`(2 - 2x)/(2y - 4) = 1/0`

⇒ 2y – 4 = 0

⇒ y = 2

अब y का मान समीकरण (i) में रखने पर हमें प्राप्त होता है

⇒ x2 + (2)2 – 2x – 8 + 1 = 0

⇒ x2 – 2x + 4 – 8 + 1 = 0

⇒ x2 – 2x – 3 = 0

⇒ x2 – 3x + x – 3 = 0

⇒ x(x – 3) + 1(x – 3) = 0

⇒ (x – 3)(x + 1) = 0

⇒ x = – 1 या 3

इसलिए, अभीष्ट बिंदु (– 1, 2) और (3, 2) हैं।

shaalaa.com
अवकलज के अनुप्रयोग
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: अवकलज के अनुप्रयोग - प्रश्नावली [पृष्ठ १३४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 18 | पृष्ठ १३४

संबंधित प्रश्न

अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।

(33)-1/5


निर्धारित कीजिए कि x के किन मानों के लिए, फलन y = `x^4 – (4x^3)/3` वर्धमान है तथा किन मानों के लिए, यह हासमान है।


सिद्ध कीजिए कि फलन f(x) = 4x3 – 18x2 + 27x – 7 का कोई उच्चिष्ठ अथवा निम्निष्ठ नहीं है।


वक्रों `x^2/"a"^2 - y^2/"b"^2` = 1 तथा xy = c2 के लम्बकोणीय प्रतिच्छेदन के लिए प्रतिबंध ज्ञात कीजिए।


किसी शांकवीय बर्तन के शीर्ष के एक छोटे छिद्र से, जिसका अक्ष ऊर्घ्वाधर है, पानी 1 cu cm/sec की दर से बह रहा है। बर्तन में पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब तिर्यक ऊँचाई 4 cm हैं। शांकवीय बर्तन का शीर्ष कोण `pi/6` है।


वक्र y = sinx के बिंदु (0, 0) पर अभिलंब का समीकरण:


a के वे मान जिनके लिए y = x2 + ax + 25 x-अक्ष को स्पर्श करता है, ______ है।


मान लीजिए कि c पर f का द्वितीय अवकलज है, इस प्रकार कि f ′(c) = 0 तथा f ″(c) > 0, तो c पर फलन ______ है।


नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।


कोण θ, 0 < θ < `π/2`, ज्ञात कीजिए जो अपने sine से दोगुनी तेजी से बढ़ता है।


सिद्ध कीजिए कि वक्र xy = 4 तथा x2 + y2 = 8, एक दूसरे को स्पर्श करते हैं।


वक्र `sqrt(x) + sqrt(y) = 4` उस बिंदु के निर्देशांक ज्ञात कीजिए, जिस पर स्पर्श रेखा का अक्षों से झुकाव समान है।


सिद्ध कीजिए कि f (x) = 2x + cot–1x + log `(sqrt(1+x^2) - x)`, R में वर्धमान फलन है।


किस बिंदु पर, वक्र y = – x3 + 3x2 + 9x – 27 की प्रवणता उच्चतम है? उच्चतम प्रवणता भी ज्ञात कीजिए।


सिद्ध कीजिए कि f (x) = sinx + `sqrt3` cosx का उच्चिष्ठ मान x = `pi/6` पर है।


यदि किसी समकोण त्रिभुज की एक भुजा तथा कर्ण की लंबाईयों का योगफल दिया हुआ है, तो सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल उच्चतम है, जब उनके मध्य का कोण `pi/3` है।


AB किसी वृत्त का एक व्यास है तथा C उसकी परिधि पर कोई बिंदु है। सिद्ध कीजिए कि ∆ ABC का क्षेत्रफल महत्तम उस समय होगा जब वह समद्धिबाहु है।


रेखा x + 3y = 8  के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।


यदि वक्र ay + x2 = 7 तथा x3 = y बिंदु (1, 1) पर लंबवत काटते हैं, तो a का मान है   ______


y = x(x – 3)2, x  के नीचे दिए हुए मानों के लिए हासमान है, 


यदि x एक वास्तविक संख्या है, तो x2 – 8x + 17 का निम्नतम मान ______


बहुपद x3 – 18x2 + 96x का, अंतराल [0, 9] में, निम्नतम मान ______


फलन f (x) = 2x3 – 3x2 – 12x + 4 के ______


sin x . cos x का उच्चतम मान है ______


f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______


वक् y = –x3 + 3x2 + 9x – 27 की उच्चतम प्रवणता ______


वक्र y = tanx के (0, 0) पर अभिलंब का समीकरण ______ है।


a के वे मान जिनके लिए फलन f (x) = sinx – ax + b, R में वर्धमान है ______ .हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×