हिंदी

किसी शांकवीय बर्तन के शीर्ष के एक छोटे छिद्र से, जिसका अक्ष ऊर्घ्वाधर है, पानी 1 cu cm/sec की दर से बह रहा है। बर्तन में पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

किसी शांकवीय बर्तन के शीर्ष के एक छोटे छिद्र से, जिसका अक्ष ऊर्घ्वाधर है, पानी 1 cu cm/sec की दर से बह रहा है। बर्तन में पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब तिर्यक ऊँचाई 4 cm हैं। शांकवीय बर्तन का शीर्ष कोण `pi/6` है।

योग

उत्तर

दिया हुआ है कि `"dv"/"dt"` = 1 cm3/s

जहाँ v शांकवीय बर्तन में पानी का आयतन है।

आकृति 6.2 से, l = 4 cm

h = `"l" cos  pi/6`

= `sqrt(3)/2 "l"` तथा r = `"l" sin  pi/6 = "l"/2`.

इसलिए, v = `1/3 pi"r"^2"h"`

= `pi/3  "l"^2/4 sqrt(3)/2 "l"`

= `(sqrt(3)pi)/24 "l"^3`

`"dv"/"dt" = (sqrt(3)pi)/8 "l"^2 "dl"/"dt"`

इसलिए, l = `(sqrt(3)pi)/8 16 * "dl"/"dt"`

⇒ `"dl"/"dt" = 1/(2sqrt(3)pi)` cm/s.

अतः, तिर्यक ऊँचाई के घटने की दर = `1/(2sqrt(3)pi)` cm/s

shaalaa.com
अवकलज के अनुप्रयोग
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: अवकलज के अनुप्रयोग - हल किए हुए उदाहरण [पृष्ठ १२२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 6 अवकलज के अनुप्रयोग
हल किए हुए उदाहरण | Q 11 | पृष्ठ १२२

संबंधित प्रश्न

अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।

(33)-1/5


`pi/4` अर्ध शीर्ष कोण वाले एक शांकवीय कीप (funnel) से, जिसकां शीर्ष नीचे की ओर है, कीप के पृष्ठ के क्षेत्रफल में 2cm2/sec की समान दर से उसके शीर्ष के एक छिद्र से पानी बह रहा है। पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब उसकी तिर्यंक ऊँचाई 4cm है।


अवकलों के प्रयोग द्वारा `sqrt(0.082)` का सन्निकट मान ज्ञात कीजिए।


f(x) = secx + log cos2x, 0 < x < 2π का उच्चतम तथा निम्नतम मान ज्ञात कीजिए।


उस महत्तम आयत का क्षेत्रफल ज्ञात कीजिए, जो दीर्घवृत्त `x^2/a^2 + y^2/b^2` = 1 के अंतर्गत स्थित है।


दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 = 2


समीकरण x = et . cost, y = et . sint द्वारा प्रदत्त वक्र की t = `pi/4` पर स्पर्श रेखा, x-अक्ष से कोण बनाती है।


वक्र y = sinx के बिंदु (0, 0) पर अभिलंब का समीकरण:


a के वे मान जिनके लिए y = x2 + ax + 25 x-अक्ष को स्पर्श करता है, ______ है।


एक पतंग 151.5 cm की ऊंचाई पर क्षैतिज दिशा में गतिमान है। यदि पतंग की चाल 10 m/s है, तो डोरी को कितनी तेजी से छोड़ा जा रहा है, जब उसकी दूरी पतंग उड़ाने वाले लड़के से 250 cm है? लड़के की ऊंचाई 1.5 m है।


किसी घन का आयतन एक अचर दर से बढ़ रहा है। सिद्ध कीजिए कि उसके पृष्ठीय क्षेत्रफल की वृद्धि उसकी भुजा की व्युत्क्रमानुपाती है।


सिद्ध कीजिए कि वक्र xy = 4 तथा x2 + y2 = 8, एक दूसरे को स्पर्श करते हैं।


वक्र 3x2 – y2 = 8 के उन अभिलम्ब रेखाओं के समीकरण ज्ञात कीजिए, जो रेखा x + 3y = 4 के समांतर हैं।


सिद्ध कीजिए कि f (x) = 2x + cot–1x + log `(sqrt(1+x^2) - x)`, R में वर्धमान फलन है।


सिद्ध कीजिए कि a ≥ 1 के लिए f (x) = `sqrt3` sinx - cosx - 2ax + b, R में हासमान फलन है।


फलन f (x) = x5 – 5x4 + 5x3 – 1 के स्थानीय उच्चिष्ठ, स्थानीय निम्निष्ठ तथा नति परिवर्तन के बिंदुओं को ज्ञात कीजिए। साथ ही संगत स्थानीय उच्चतम तथा स्थानीय निम्नतम मानों को भी ज्ञात कीजिए।


36 cm परिमाप वाले आयत की विमाएँ ज्ञात कीजिए जिसे उसकी भुजाओं में से किसी एक के चारों ओर घुमाने पर अधिक से अधिक सम्भव आयतन प्रसर्प (sweep) हो।


AB किसी वृत्त का एक व्यास है तथा C उसकी परिधि पर कोई बिंदु है। सिद्ध कीजिए कि ∆ ABC का क्षेत्रफल महत्तम उस समय होगा जब वह समद्धिबाहु है।


एक क्षैतिज फर्श पर 5 मीटर लंबी एक सीढ़ी किसी ऊर्ध्वाधर दीवार पर झुकी है।यदि सीढ़ी का ऊपरी सिरा 10 cm/sec, की दर से नीचे की ओर फिसल रहा है तो सीढ़ी तथा फर्श के बीच का कोण, उस समय जब सीढ़ी का निचला सिरा दीवार से 2 मीटर दूर है:


 बिंदु (0, 0) पर वक्र y = `x^(1/5)` की ______


रेखा x + 3y = 8  के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।


दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 – 2 = 0 किस कोण पर प्रतिच्छेद करते हैं:


 वह अंतराल, जिसमें फलन f (x) = 2x3 + 9x2 + 12x – 1 हासमान है,


फलन f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 ______


फलन f (x) = 2x3 – 3x2 – 12x + 4 के ______


वक् y = –x3 + 3x2 + 9x – 27 की उच्चतम प्रवणता ______


वक् y = 4x2 + 2x – 8 तथा, y = x3 – x + 13 एक दूसरे को बिंदु ______ पर स्पर्श करते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×