Advertisements
Advertisements
प्रश्न
फलन f (x) = x5 – 5x4 + 5x3 – 1 के स्थानीय उच्चिष्ठ, स्थानीय निम्निष्ठ तथा नति परिवर्तन के बिंदुओं को ज्ञात कीजिए। साथ ही संगत स्थानीय उच्चतम तथा स्थानीय निम्नतम मानों को भी ज्ञात कीजिए।
उत्तर
हमारे पास f(x) = x5 – 5x4 + 5x3 – 1 है,
⇒ f '(x) = 5x4 – 20x3 + 15x2
f '(x) = 0 स्थानीय उच्चिष्ठ और स्थानीय निम्निष्ठ के लिए,
⇒ 5x4 – 20x3 + 15x2 = 0
⇒ 5x2(x2 – 4x + 3) = 0
⇒ 5x2(x2 – 3x – x + 3) = 0
⇒ x2(x – 3)(x – 1) = 0
∴ x = 0, x = 1 और x = 3
अब f '(x) = 20x3 – 60x2 + 30x
⇒ `"f''"(x)_("at" x = 0)` = 20(0)3 – 60(0)2 + 30(0) = 0
जो न तो उच्चिष्ठ और न ही निम्निष्ठ।
∴ f (x) का विभक्ति बिंदु x = 0 पर है।
`"f''"(x)_("at" x = 1)` = 20(1)3 – 60(1)2 + 30(1)
= 20 – 60 + 30
= –10 < 0 उच्चिष्ठ
`"f''"(x)_("at" x = 2)` = 20(3)3 – 60(3)2 + 30(3)
= 540 – 540 + 90
= 90 > 0 निम्निष्ठ
x = 1 पर फलन का अधिकतम मान
f (x) = (1)5 – 5(1)4 + 5(1)3 – 1
= 1 – 5 + 5 – 1
= 0
x = 3 पर न्यूनतम मान है।
f (x) = (3)5 – 5(3)4 + 5(3)3 – 1
= 243 – 405 + 135 – 1
= 378 – 406
= – 28
इसलिए, फलन का अधिकतम मान x = 1 और अधिकतम मान = 0 है और इसका न्यूनतम मान x = 3 है और इसका न्यूनतम मान – 28 है।
APPEARS IN
संबंधित प्रश्न
अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।
(33)-1/5
वक्र y2 = x तथा x2 = y के बीच का प्रतिच्छेद - कोण ज्ञात कीजिए।
सिद्ध कीजिए कि फलन f(x) = 4x3 – 18x2 + 27x – 7 का कोई उच्चिष्ठ अथवा निम्निष्ठ नहीं है।
वक्रों `x^2/"a"^2 - y^2/"b"^2` = 1 तथा xy = c2 के लम्बकोणीय प्रतिच्छेदन के लिए प्रतिबंध ज्ञात कीजिए।
अंतराल `[-pi/2, pi/2]` में फलन f (x) = sin2x – x, के उच्चतम तथा निम्नितम मानों का अंतर ज्ञात कीजिए।
दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 = 2
a के वे मान जिनके लिए y = x2 + ax + 25 x-अक्ष को स्पर्श करता है, ______ है।
मान लीजिए कि c पर f का द्वितीय अवकलज है, इस प्रकार कि f ′(c) = 0 तथा f ″(c) > 0, तो c पर फलन ______ है।
sinx + cosx का उच्चिष्ठ मान ______ है।
नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।
सिद्ध कीजिए कि वक्र xy = 4 तथा x2 + y2 = 8, एक दूसरे को स्पर्श करते हैं।
वक्र y = 4 – x2 तथा y = x2 का प्रतिच्छेद-कोण ज्ञात कीजिए।
वक्र 3x2 – y2 = 8 के उन अभिलम्ब रेखाओं के समीकरण ज्ञात कीजिए, जो रेखा x + 3y = 4 के समांतर हैं।
यदि किसी समकोण त्रिभुज की एक भुजा तथा कर्ण की लंबाईयों का योगफल दिया हुआ है, तो सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल उच्चतम है, जब उनके मध्य का कोण `pi/3` है।
यदि सरल रेखा x cosα + y sinα = p वक्र `x^2/"a"^2 + y^2/"b"^2` = 1 को स्पर्श करती है, तो सिद्ध कीजिए कि a2 cos2α + b2 sin2α = p2
AB किसी वृत्त का एक व्यास है तथा C उसकी परिधि पर कोई बिंदु है। सिद्ध कीजिए कि ∆ ABC का क्षेत्रफल महत्तम उस समय होगा जब वह समद्धिबाहु है।
वर्गाकार आधार तथा ऊर्ध्वाधर पृष्ठ वाले धातु के किसी बाक्स में 1024 cm3 वस्तु आती है। शीर्ष तथा आधार के पृष्ठों के माल (वस्तु) का मूल्य Rs 5/cm2 है तथा पृष्ठों के मान का मूल्य Rs 2.50/cm2 हैं। बाक्स का निम्नतम मूल्य ज्ञात कीजिए।
रेखा x + 3y = 8 के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।
वक्र y (1 + x2 ) = 2 – x के, उस बिंदु पर, जहाँ यह x-अक्ष को काटती है, स्पर्श रेखा का समीकरण ______
मान लीजिए कि f : R → R, f (x) = 2x + cosx द्वारा परिभाषित है, तो f ______
फलन f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 ______
निम्नलिखित में से कौन-सा फलन 0, `pi/2` में हासमान है,
यदि x एक वास्तविक संख्या है, तो x2 – 8x + 17 का निम्नतम मान ______
f(x) = xx का स्तब्ध बिंदु है ______
फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।