Advertisements
Advertisements
प्रश्न
फलन f (x) = x5 – 5x4 + 5x3 – 1 के स्थानीय उच्चिष्ठ, स्थानीय निम्निष्ठ तथा नति परिवर्तन के बिंदुओं को ज्ञात कीजिए। साथ ही संगत स्थानीय उच्चतम तथा स्थानीय निम्नतम मानों को भी ज्ञात कीजिए।
उत्तर
हमारे पास f(x) = x5 – 5x4 + 5x3 – 1 है,
⇒ f '(x) = 5x4 – 20x3 + 15x2
f '(x) = 0 स्थानीय उच्चिष्ठ और स्थानीय निम्निष्ठ के लिए,
⇒ 5x4 – 20x3 + 15x2 = 0
⇒ 5x2(x2 – 4x + 3) = 0
⇒ 5x2(x2 – 3x – x + 3) = 0
⇒ x2(x – 3)(x – 1) = 0
∴ x = 0, x = 1 और x = 3
अब f '(x) = 20x3 – 60x2 + 30x
⇒ `"f''"(x)_("at" x = 0)` = 20(0)3 – 60(0)2 + 30(0) = 0
जो न तो उच्चिष्ठ और न ही निम्निष्ठ।
∴ f (x) का विभक्ति बिंदु x = 0 पर है।
`"f''"(x)_("at" x = 1)` = 20(1)3 – 60(1)2 + 30(1)
= 20 – 60 + 30
= –10 < 0 उच्चिष्ठ
`"f''"(x)_("at" x = 2)` = 20(3)3 – 60(3)2 + 30(3)
= 540 – 540 + 90
= 90 > 0 निम्निष्ठ
x = 1 पर फलन का अधिकतम मान
f (x) = (1)5 – 5(1)4 + 5(1)3 – 1
= 1 – 5 + 5 – 1
= 0
x = 3 पर न्यूनतम मान है।
f (x) = (3)5 – 5(3)4 + 5(3)3 – 1
= 243 – 405 + 135 – 1
= 378 – 406
= – 28
इसलिए, फलन का अधिकतम मान x = 1 और अधिकतम मान = 0 है और इसका न्यूनतम मान x = 3 है और इसका न्यूनतम मान – 28 है।
APPEARS IN
संबंधित प्रश्न
`pi/4` अर्ध शीर्ष कोण वाले एक शांकवीय कीप (funnel) से, जिसकां शीर्ष नीचे की ओर है, कीप के पृष्ठ के क्षेत्रफल में 2cm2/sec की समान दर से उसके शीर्ष के एक छिद्र से पानी बह रहा है। पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब उसकी तिर्यंक ऊँचाई 4cm है।
निर्धारित कीजिए कि x के किन मानों के लिए, फलन y = `x^4 – (4x^3)/3` वर्धमान है तथा किन मानों के लिए, यह हासमान है।
अवकलों के प्रयोग द्वारा `sqrt(0.082)` का सन्निकट मान ज्ञात कीजिए।
वक्रों `x^2/"a"^2 - y^2/"b"^2` = 1 तथा xy = c2 के लम्बकोणीय प्रतिच्छेदन के लिए प्रतिबंध ज्ञात कीजिए।
किसी शांकवीय बर्तन के शीर्ष के एक छोटे छिद्र से, जिसका अक्ष ऊर्घ्वाधर है, पानी 1 cu cm/sec की दर से बह रहा है। बर्तन में पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब तिर्यक ऊँचाई 4 cm हैं। शांकवीय बर्तन का शीर्ष कोण `pi/6` है।
वक्र y2 = 4ax तथा x2 = 4by का प्रतिच्छेद कोण ज्ञात कीजिए।
समीकरण x = et . cost, y = et . sint द्वारा प्रदत्त वक्र की t = `pi/4` पर स्पर्श रेखा, x-अक्ष से कोण बनाती है।
वक्र y = sinx के बिंदु (0, 0) पर अभिलंब का समीकरण:
यदि f (x) = sinx तो अंतराल `[(-pi)/2, pi/2]` में f का निम्निष्ठ मान ______ है।
sinx + cosx का उच्चिष्ठ मान ______ है।
x तथा y दो वर्गों की भुजाएँ हैं, इस प्रकार कि y = x – x2 दूसरे वर्ग के क्षेत्रफल में परिवर्तनकी दर पहले वर्ग के क्षेत्रफल के सापेक्ष ज्ञात कीजिए।
सिद्ध कीजिए कि वक्र xy = 4 तथा x2 + y2 = 8, एक दूसरे को स्पर्श करते हैं।
वक्र `sqrt(x) + sqrt(y) = 4` उस बिंदु के निर्देशांक ज्ञात कीजिए, जिस पर स्पर्श रेखा का अक्षों से झुकाव समान है।
वक्र x2 + y2 – 2x – 4y + 1 = 0 के किन बिंदुओं पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।
किसी नगर में एक टेलीफोन कंपनी की सूची में 500 ग्राहक हैं और वह प्रत्येक ग्राहक से प्रतिवर्ष 300 रु निश्चित शुल्क वसूलती हैं। कंपनी वार्षिक शुल्क बढ़ाना चाहती है, और ऐसा माना जाता है कि प्रत्येक 1 रु की वृद्धि करने पर एक ग्राहक टेलीफोन सेवा लेना समाप्त कर देगा।ज्ञात कीजिए कि कितनी वृद्धि करने से महत्तम (उच्चतम) लाभ होगा।
किसी समबाहु त्रिभुज की भुजाएँ 2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।
एक क्षैतिज फर्श पर 5 मीटर लंबी एक सीढ़ी किसी ऊर्ध्वाधर दीवार पर झुकी है।यदि सीढ़ी का ऊपरी सिरा 10 cm/sec, की दर से नीचे की ओर फिसल रहा है तो सीढ़ी तथा फर्श के बीच का कोण, उस समय जब सीढ़ी का निचला सिरा दीवार से 2 मीटर दूर है:
वक्र y (1 + x2 ) = 2 – x के, उस बिंदु पर, जहाँ यह x-अक्ष को काटती है, स्पर्श रेखा का समीकरण ______
दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 – 2 = 0 किस कोण पर प्रतिच्छेद करते हैं:
निम्नलिखित में से कौन-सा फलन 0, `pi/2` में हासमान है,
फलन f (x) = 2x3 – 3x2 – 12x + 4 के ______
f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______
वक् y = –x3 + 3x2 + 9x – 27 की उच्चतम प्रवणता ______
`(1/x)^x`का उच्चतम मान है ______
वक्र y = tanx के (0, 0) पर अभिलंब का समीकरण ______ है।
फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।