Advertisements
Advertisements
प्रश्न
एक क्षैतिज फर्श पर 5 मीटर लंबी एक सीढ़ी किसी ऊर्ध्वाधर दीवार पर झुकी है।यदि सीढ़ी का ऊपरी सिरा 10 cm/sec, की दर से नीचे की ओर फिसल रहा है तो सीढ़ी तथा फर्श के बीच का कोण, उस समय जब सीढ़ी का निचला सिरा दीवार से 2 मीटर दूर है:
पर्याय
`1/10` radian/sec
`1/20` radian/sec
20 radian/sec
10` radian/sec
उत्तर
सही उत्तर `underline(1/20 "radian/sec")` है।
व्याख्या:
सीढ़ी की लंबाई = 5 m
माना AB = y m and BC = x m
∴ दायीं ओर ΔABC में,
AB2 + BC2 = AC2
⇒ x2 + y2 = (5)2
⇒ x2 + y2 = 25
दोनों पक्षों को w.r.t x, में विभेदित करते हुए, हमारे पास है
`2x * "dx"/"dt" + 2y * "dy"/"dt"` = 0
⇒ `x "dx"/"dt" + y * "dy"/"dt"` = 0
⇒ `2 * "dx"/"dt" + y xx (-0.1)` = 0 ....[∵ x = 2m]
⇒ `2 * "dx"/"dt" + sqrt(25 - x^2) xx (-0.1)` = 0
⇒ `2 * "dx"/"dt" + sqrt(25 - 4) xx (-0.1)` = 0
⇒ `2 * "dx"/"dt" - sqrt(21)/10` = 0
⇒ `"dx"/"dt" = sqrt(21)/20`
अब cos θ = `"BC"/"AC"` ....(θ radian में है)
⇒ cos θ = `x/5`
दोनों पक्षों में अंतर करना w.r.t. t, हमें मिलता है
`"d"/"dt" cos theta = 1/5 * "dx"/"dt"`
⇒ `- sin theta ("d"theta)/"dt" = 1/5 * sqrt(21)/20`
⇒ `("d"theta)/"dt" = sqrt(21)/100 xx (- 1/sin theta)`
= `sqrt(21)/100 xx -(1/("AB"/"AC"))`
= `- sqrt(21)/100 xx "AC"/"AB"`
= `- sqrt(21)/100 xx 5/sqrt(21)`
= `- 1/20` radian/sec
[(–) चिन्ह कोण के परिवर्तन में कमी दर्शाता है]
इसलिए, अभीष्ट दर = `1/20` radian/sec
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि फलन f(x) = tanx – 4x अंतराल `((-pi)/3, pi/3)` निरंतर हासमान है।
निर्धारित कीजिए कि x के किन मानों के लिए, फलन y = `x^4 – (4x^3)/3` वर्धमान है तथा किन मानों के लिए, यह हासमान है।
सिद्ध कीजिए कि फलन f(x) = 4x3 – 18x2 + 27x – 7 का कोई उच्चिष्ठ अथवा निम्निष्ठ नहीं है।
किसी शांकवीय बर्तन के शीर्ष के एक छोटे छिद्र से, जिसका अक्ष ऊर्घ्वाधर है, पानी 1 cu cm/sec की दर से बह रहा है। बर्तन में पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब तिर्यक ऊँचाई 4 cm हैं। शांकवीय बर्तन का शीर्ष कोण `pi/6` है।
वक्र y = cos (x + y), –2π ≤ x ≤ 2π, की उन सभी स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा x + 2y = 0 के समांतर हैं।
वक्र `3"y" = 6"x" – 5"x"^3` पर स्थित उस बिंदु का भुज, जिस पर वक्र का अभिलंब मूल बिंदुसे होकर जाता है।
समीकरण x = et . cost, y = et . sint द्वारा प्रदत्त वक्र की t = `pi/4` पर स्पर्श रेखा, x-अक्ष से कोण बनाती है।
(1.999)5 का सन्निकट मान ज्ञात कीजिए।
किसी तरनताल को सफाई के लिए खाली करना है।यदि ताल को बंद करने के t seconds बाद ताल में पानी की मात्रा, लिटर में, L से निरूपित होती है तथा L = 200 (10 – t)2 तो 5 seconds में अंत में पानी कितनी तेजी से बाहर निकल रहा है? प्रथम 5 seconds में पानी के बाहर निकलने की औसत दर क्या है?
सिद्ध कीजिए कि रेखा `x/"a" +y/"b"` = 1 , वक्र y = b . e-x/a को उस बिंदु पर स्पर्श करती है जिस पर वक्र y-अक्ष को काटता है।
सिद्ध कीजिए कि f (x) = 2x + cot–1x + log `(sqrt(1+x^2) - x)`, R में वर्धमान फलन है।
सिद्ध कीजिए कि f (x) = sinx + `sqrt3` cosx का उच्चिष्ठ मान x = `pi/6` पर है।
c2 क्षेत्रफल के किसी दिए हुए गत्ते से वर्गाकार आधार का एक खुला हुआ बाक्स बनाना है। सिद्ध कीजिए कि बाक्स का महत्तम आयतन `c^3/(6sqrt3)` घन इकाई है।
किसी समबाहु त्रिभुज की भुजाएँ 2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।
वक्र y (1 + x2 ) = 2 – x के, उस बिंदु पर, जहाँ यह x-अक्ष को काटती है, स्पर्श रेखा का समीकरण ______
वह अंतराल, जिसमें फलन f (x) = 2x3 + 9x2 + 12x – 1 हासमान है,
फलन f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 ______
निम्नलिखित में से कौन-सा फलन 0, `pi/2` में हासमान है,
फलन f(x) = tanx – x ______
यदि x एक वास्तविक संख्या है, तो x2 – 8x + 17 का निम्नतम मान ______
बहुपद x3 – 18x2 + 96x का, अंतराल [0, 9] में, निम्नतम मान ______
वक् y = –x3 + 3x2 + 9x – 27 की उच्चतम प्रवणता ______
फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।
फलन f(x) = `"a"x + "b"/x` (a > 0, b > 0, x > 0) का निम्नतम मान ______ है।