Advertisements
Advertisements
प्रश्न
बहुपद x3 – 18x2 + 96x का, अंतराल [0, 9] में, निम्नतम मान ______
पर्याय
126
0
135
160 है।
उत्तर
बहुपद x3 – 18x2 + 96x का, अंतराल [0, 9] में, निम्नतम मान 0 है।
व्याख्या:
माना f(x) = x3 – 18x2 + 96x
तो, f'(x) = 3x2 – 36x + 96
स्थानीय उच्चिष्ठ और स्थानीय न्यूनतम f'(x) = 0 के लिए
∴ 3x2 – 36x + 96 = 0
⇒ x2 – 12x + 32 = 0
⇒ x2 – 8x – 4x + 32 = 0
⇒ x(x – 8) – 4(x – 8) = 0
⇒ (x – 8)(x – 4) = 0
∴ x = 8, 4 ∈ [0, 9]
तो, x = 4, 8 स्थानीय उच्चिष्ठ और स्थानीय निम्निष्ठ के बिंदु हैं।
अब हम x = 0, 4, 8, 9 पर निरपेक्ष उच्चिष्ठ या निरपेक्ष न्यूनतम की गणना करेंगे।
∴ f(x)= x3 – 18x2 + 96x
`"f"(x)_(x = 0)` = 0 – 0 + 0 = 0
`"f"(x)_(x = 4)` = (4)3 – 18(4)2 + 96(4)
= 64 – 288 + 384
= 448 – 288
= 160
`"f"(x)_(x = 8)` = (8)3 – 18(8)2 + 96(8)
= 512 – 1152 + 768
= 1280 – 1152
= 128
`"f"(x)_(x = 9)` = (9)3 – 18(9)2 + 96(9)
= 729 – 1458 + 864
= 1593 – 1458
= 135
अत: x = 0 पर f का निरपेक्ष न्यूनतम मान 0 है।
APPEARS IN
संबंधित प्रश्न
अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।
`(17/81)^(1/4)`
अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।
(33)-1/5
वक्र y = cos (x + y), –2π ≤ x ≤ 2π, की उन सभी स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा x + 2y = 0 के समांतर हैं।
वक्र `3"y" = 6"x" – 5"x"^3` पर स्थित उस बिंदु का भुज, जिस पर वक्र का अभिलंब मूल बिंदुसे होकर जाता है।
समीकरण x = et . cost, y = et . sint द्वारा प्रदत्त वक्र की t = `pi/4` पर स्पर्श रेखा, x-अक्ष से कोण बनाती है।
a के वे मान जिनके लिए y = x2 + ax + 25 x-अक्ष को स्पर्श करता है, ______ है।
यदि f (x) = `1/(4x^2 + 2x + 1)`, तो इसका उच्चतम मान ______ है।
यदि f (x) = sinx तो अंतराल `[(-pi)/2, pi/2]` में f का निम्निष्ठ मान ______ है।
sinx + cosx का उच्चिष्ठ मान ______ है।
नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।
(1.999)5 का सन्निकट मान ज्ञात कीजिए।
सिद्ध कीजिए कि वक्र xy = 4 तथा x2 + y2 = 8, एक दूसरे को स्पर्श करते हैं।
सिद्ध कीजिए कि वक्र y2 = 4x तथा x2 + y2 – 6x + 1 = 0 एक दूसरे को बिंदु (1, 2) पर स्पर्श करते हैं।
सिद्ध कीजिए कि a ≥ 1 के लिए f (x) = `sqrt3` sinx - cosx - 2ax + b, R में हासमान फलन है।
किसी नगर में एक टेलीफोन कंपनी की सूची में 500 ग्राहक हैं और वह प्रत्येक ग्राहक से प्रतिवर्ष 300 रु निश्चित शुल्क वसूलती हैं। कंपनी वार्षिक शुल्क बढ़ाना चाहती है, और ऐसा माना जाता है कि प्रत्येक 1 रु की वृद्धि करने पर एक ग्राहक टेलीफोन सेवा लेना समाप्त कर देगा।ज्ञात कीजिए कि कितनी वृद्धि करने से महत्तम (उच्चतम) लाभ होगा।
c2 क्षेत्रफल के किसी दिए हुए गत्ते से वर्गाकार आधार का एक खुला हुआ बाक्स बनाना है। सिद्ध कीजिए कि बाक्स का महत्तम आयतन `c^3/(6sqrt3)` घन इकाई है।
वर्गाकार आधार तथा ऊर्ध्वाधर पृष्ठ वाले धातु के किसी बाक्स में 1024 cm3 वस्तु आती है। शीर्ष तथा आधार के पृष्ठों के माल (वस्तु) का मूल्य Rs 5/cm2 है तथा पृष्ठों के मान का मूल्य Rs 2.50/cm2 हैं। बाक्स का निम्नतम मूल्य ज्ञात कीजिए।
भुजा x, 2x और `x/3` किसी आयताकार समांतर षट्फलक तथा एक गोले के पृष्ठीय क्षेत्रफल का योगफल अचर दिया हुआ है। सिद्ध कीजिए कि उनके आयतन का योगफल निम्नतम होगा, यदि x गोले की त्रिज्या के तीन गुने के बराबर है। उनके आयतन के योगफल का निम्नतम मान भी ज्ञात कीजिए।
किसी समबाहु त्रिभुज की भुजाएँ 2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।
बिंदु (0, 0) पर वक्र y = `x^(1/5)` की ______
वक्र x = t2 + 3t – 8, y = 2t2 – 2t – 5 की, बिंदु (2, -1) पर, स्पर्श रेखा की प्रवणता ______ है।
वह अंतराल, जिसमें फलन f (x) = 2x3 + 9x2 + 12x – 1 हासमान है,
मान लीजिए कि f : R → R, f (x) = 2x + cosx द्वारा परिभाषित है, तो f ______
निम्नलिखित में से कौन-सा फलन 0, `pi/2` में हासमान है,
sin x . cos x का उच्चतम मान है ______
f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______
वक्र y = tanx के (0, 0) पर अभिलंब का समीकरण ______ है।
फलन f(x) = `"a"x + "b"/x` (a > 0, b > 0, x > 0) का निम्नतम मान ______ है।