Advertisements
Advertisements
प्रश्न
यदि किसी समकोण त्रिभुज की एक भुजा तथा कर्ण की लंबाईयों का योगफल दिया हुआ है, तो सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल उच्चतम है, जब उनके मध्य का कोण `pi/3` है।
उत्तर
माना ΔABC एक समकोण त्रिभुज है जिसमें ∠B = 90° है।
माना AC = x, BC = y
∴ AB = `sqrt(x^2 - y^2)`
∠ACB = θ
माना Z = x + y ....(दिया है)
अब ΔABC, A का क्षेत्रफल = `1/2 xx "AB" xx "BC"`
⇒ A = `1/2 y * sqrt(x^2 - y^2)`
⇒ A = `1/2 y * sqrt(("Z" - y)^2 - y^2)`
दोनों पक्षों का वर्ग करने पर, हम प्राप्त करते हैं
⇒ A2 = `1/4 y^2 [("Z" - y)^2 - y^2]`
⇒ A2 = `1/4 y^2 ["Z"^2 + y^2 - 2"Z" y - y^2]`
⇒ P = `1/4 y^2 ["Z"^2 - 2"Z"y]`
⇒ P = `1/4 [y^2"Z"^2 - 2"Z"y^3]` ....[A2 = P]
दोनों पक्षों में अंतर करना w.r.t. y हमें मिलता है
`"dP"/"dy" = 1/4 [2y"Z"^2 - 6"Z"y^2]` .....(i)
स्थानीय उच्चिष्ठ और स्थानीय निम्निष्ठ के लिए
`"dP"/"dy"` = 0
∴ `1/4 (2y"Z"^2 - 6"Z"y^2)` = 0
⇒ `(2y"Z")/4 ("Z" - 3y)` = 0
⇒ yZ(Z – 3y) = 0
⇒ yZ ≠ 0 .....(∵ y ≠ 0 और Z ≠ 0)
⇒ Z – 3y = 0
⇒ y = `"Z"/3`
⇒ y = `(x + y)/3` .....(∵ Z = x + y)
⇒ 3y = x + y
⇒ 3y – y = x
⇒ 2y = x
⇒ `y/x = 1/2`
⇒ cos θ = `1/2`
∴ θ = `pi/3`
विभेदक समीकरण (i) w.r.t. y,
हमारे पास `("d"^2"P")/("dy"^2) = 1/4 [2"Z"^2 - 12"Z"y]`
`("d"^2"P")/("dy"^2)` पर y = `"Z"/3 = 1/4 [2"Z"^2 - 12"Z" * "Z"/3]`
= `1/4 [2"Z"^2 - 4"Z"^2]`
= `(-"Z"^2)/2 < 0`
इसलिए, दिए गए त्रिभुज का क्षेत्रफल अधिकतम होता है जब उसके कर्ण और एक भुजा के बीच का कोण होता है `pi/3`।
APPEARS IN
संबंधित प्रश्न
अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।
(33)-1/5
वक्र y = 5x – 2x3 के लिए, यदि x में 2 इकाई/से. की दर से वृद्धि हो रही है, तो x = 3 पर वक्र का प्रावण्य कितनी तीव्रता से परिवर्तित हो रहा है?
फलन f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105` के सभी स्थानीय उच्चिष्ठ तथा स्थानीय निम्निष्ठ बिंदुओं को ज्ञात कीजिए।
किसी शांकवीय बर्तन के शीर्ष के एक छोटे छिद्र से, जिसका अक्ष ऊर्घ्वाधर है, पानी 1 cu cm/sec की दर से बह रहा है। बर्तन में पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब तिर्यक ऊँचाई 4 cm हैं। शांकवीय बर्तन का शीर्ष कोण `pi/6` है।
f(x) = secx + log cos2x, 0 < x < 2π का उच्चतम तथा निम्नतम मान ज्ञात कीजिए।
शीर्ष कोण `2theta` वाला एक समद्धिबाहु त्रिभुज a त्रिज्या वाले किसी वृत्त के अंतर्गत स्थित है। सिद्ध कीजिए कि त्रिभुजं का क्षेत्रफल उच्चतम है। जब `theta = pi/6`
वक्र `3"y" = 6"x" – 5"x"^3` पर स्थित उस बिंदु का भुज, जिस पर वक्र का अभिलंब मूल बिंदुसे होकर जाता है।
समीकरण x = et . cost, y = et . sint द्वारा प्रदत्त वक्र की t = `pi/4` पर स्पर्श रेखा, x-अक्ष से कोण बनाती है।
वक्र y = sinx के बिंदु (0, 0) पर अभिलंब का समीकरण:
a के वे मान जिनके लिए y = x2 + ax + 25 x-अक्ष को स्पर्श करता है, ______ है।
sinx + cosx का उच्चिष्ठ मान ______ है।
नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।
एक दूसरे से 45° पर झुकी हुई दो सड़कों के संधि-स्थल से दो मनुष्य A तथा B, एक ही समय v वेग से चलना प्रारम्भ करते हैं। यदि वे अलग-अलग सड़कों पर चलते हैं तो उनके परस्पर एक दूसरे से अलग होने की दर ज्ञात कीजिए।
एक खोखले बेलनाकार खोल, जिसकी आंतरिक तथा बाह्य त्रिज्याएँ क्रमश: 3 cm तथा 3.0005 cm हैं, में धातु के आयतन का सन्निकट मान ज्ञात कीजिए।
x तथा y दो वर्गों की भुजाएँ हैं, इस प्रकार कि y = x – x2 दूसरे वर्ग के क्षेत्रफल में परिवर्तनकी दर पहले वर्ग के क्षेत्रफल के सापेक्ष ज्ञात कीजिए।
वक्र 3x2 – y2 = 8 के उन अभिलम्ब रेखाओं के समीकरण ज्ञात कीजिए, जो रेखा x + 3y = 4 के समांतर हैं।
वक्र x2 + y2 – 2x – 4y + 1 = 0 के किन बिंदुओं पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।
सिद्ध कीजिए कि a ≥ 1 के लिए f (x) = `sqrt3` sinx - cosx - 2ax + b, R में हासमान फलन है।
सिद्ध कीजिए कि f (x) = sinx + `sqrt3` cosx का उच्चिष्ठ मान x = `pi/6` पर है।
किसी नगर में एक टेलीफोन कंपनी की सूची में 500 ग्राहक हैं और वह प्रत्येक ग्राहक से प्रतिवर्ष 300 रु निश्चित शुल्क वसूलती हैं। कंपनी वार्षिक शुल्क बढ़ाना चाहती है, और ऐसा माना जाता है कि प्रत्येक 1 रु की वृद्धि करने पर एक ग्राहक टेलीफोन सेवा लेना समाप्त कर देगा।ज्ञात कीजिए कि कितनी वृद्धि करने से महत्तम (उच्चतम) लाभ होगा।
36 cm परिमाप वाले आयत की विमाएँ ज्ञात कीजिए जिसे उसकी भुजाओं में से किसी एक के चारों ओर घुमाने पर अधिक से अधिक सम्भव आयतन प्रसर्प (sweep) हो।
एक क्षैतिज फर्श पर 5 मीटर लंबी एक सीढ़ी किसी ऊर्ध्वाधर दीवार पर झुकी है।यदि सीढ़ी का ऊपरी सिरा 10 cm/sec, की दर से नीचे की ओर फिसल रहा है तो सीढ़ी तथा फर्श के बीच का कोण, उस समय जब सीढ़ी का निचला सिरा दीवार से 2 मीटर दूर है:
यदि y = x4 – 10 तथा यदि x, 2 से 1.99 तक परिवर्तित होता है, तो y का परिवर्तन क्या (कितना) है,
वक्र x = t2 + 3t – 8, y = 2t2 – 2t – 5 की, बिंदु (2, -1) पर, स्पर्श रेखा की प्रवणता ______ है।
निम्नलिखित में से कौन-सा फलन 0, `pi/2` में हासमान है,
f(x) = xx का स्तब्ध बिंदु है ______
फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।