मराठी

36 cm परिमाप वाले आयत की विमाएँ ज्ञात कीजिए जिसे उसकी भुजाओं में से किसी एक के चारों ओर घुमाने पर अधिक से अधिक सम्भव आयतन प्रसर्प (sweep) हो। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

36 cm परिमाप वाले आयत की विमाएँ ज्ञात कीजिए जिसे उसकी भुजाओं में से किसी एक के चारों ओर घुमाने पर अधिक से अधिक सम्भव आयतन प्रसर्प (sweep) हो।

बेरीज

उत्तर

मान लीजिए x और y दिए गए आयत ABCD की लंबाई और चौड़ाई है, प्रश्न के अनुसार, आयत AD के चारों ओर घूमती है जो त्रिज्या x ऊँचाई y वाला एक बेलन बनाएगी।

∴ बेलन का आयतन V = `(pi"r"^2)/"h"`

⇒ V = `pix^2y`  .....(i)

अब आयत P का परिमाप = 2(x + y)

⇒ 36 = 2(x + y)

⇒ x + y = 18

⇒ y = 18 – x  ....(iii)

y का मान समीकरण (i) में रखना हमें मिलता है

V = `pix^2(18 - x)`

⇒ V = `pi(18x^2 - x^3)`

दोनों पक्षों में अंतर करना w.r.t. x, हमें मिलता है

`"dV"/"dx" = pi(36x - 3x^2)`  ....(iii)

`"dV"/"dx"` = 0 स्थानीय उच्चिष्ठ और स्थानीय निम्निष्ठ के लिए,

∴ `pi(36x - 3x^2)` = 0

⇒ 36x – 3x2 = 0

⇒ 3x(12 – x) = 0

⇒ x  0

∴ 12 – x = 0

⇒ x = 12

समीकरण (ii) से 

y = 18 – 12 = 6

विभेदक समीकरण (iii) w.r.t. x,

हमें मिलता है `("d"^2"V")/("dx"^2) = pi(36 - 6x)`

x = 12 पर `("d"^2"V")/("dx"^2)`

= `pi(36 - 6 xx 12)`

= `pi(36 - 72)`

= `- 36pi < 0` उच्चिष्ठ

अब इस प्रकार बने बेलन का आयतन = `pix^2y`

= `pi xx (12)^2 xx 6`

= `pi xx 144 xx 6`

= 864π cm3

इसलिए, अभीष्ट आयाम 12 cm और 6 cm और tअधिकतम आयतन 864π cmहै।

shaalaa.com
अवकलज के अनुप्रयोग
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: अवकलज के अनुप्रयोग - प्रश्नावली [पृष्ठ १३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 30 | पृष्ठ १३५

संबंधित प्रश्‍न

अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।

`(17/81)^(1/4)`


वक्र  y = 5x – 2x3 के लिए, यदि x में 2 इकाई/से. की दर से वृद्धि हो रही है, तो x = 3 पर वक्र का प्रावण्य कितनी तीव्रता से परिवर्तित हो रहा है?


वक्र y2 = x तथा x2 = y के बीच का प्रतिच्छेद - कोण ज्ञात कीजिए।


निर्धारित कीजिए कि x के किन मानों के लिए, फलन y = `x^4 – (4x^3)/3` वर्धमान है तथा किन मानों के लिए, यह हासमान है।


वक्रों `x^2/"a"^2 - y^2/"b"^2` = 1 तथा xy = c2 के लम्बकोणीय प्रतिच्छेदन के लिए प्रतिबंध ज्ञात कीजिए।


वक्र y = cos (x + y), –2π ≤ x ≤ 2π, की उन सभी स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा x + 2y = 0 के समांतर हैं।


शीर्ष कोण `2theta` वाला एक समद्धिबाहु त्रिभुज a त्रिज्या वाले किसी वृत्त के अंतर्गत स्थित है। सिद्ध कीजिए कि त्रिभुजं का क्षेत्रफल उच्चतम है। जब `theta = pi/6`


वक्र `3"y" = 6"x"  –  5"x"^3` पर स्थित उस बिंदु का भुज, जिस पर वक्र का अभिलंब मूल बिंदुसे होकर जाता है।


यदि f (x) = `1/(4x^2 + 2x + 1)`, तो इसका उच्चतम मान ______ है।


sinx + cosx का उच्चिष्ठ मान ______ है।


नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।


(1.999)5 का सन्निकट मान ज्ञात कीजिए।


किसी घन का आयतन एक अचर दर से बढ़ रहा है। सिद्ध कीजिए कि उसके पृष्ठीय क्षेत्रफल की वृद्धि उसकी भुजा की व्युत्क्रमानुपाती है।


x तथा y दो वर्गों की भुजाएँ हैं, इस प्रकार कि y = x – x2 दूसरे वर्ग के क्षेत्रफल में परिवर्तनकी दर पहले वर्ग के क्षेत्रफल के सापेक्ष ज्ञात कीजिए।


सिद्ध कीजिए कि वक्र xy = 4 तथा x2 + y2 = 8, एक दूसरे को स्पर्श करते हैं।


सिद्ध कीजिए कि वक्र y2 = 4x तथा x2 + y2 – 6x + 1 = 0 एक दूसरे को बिंदु (1, 2) पर स्पर्श करते हैं।


सिद्ध कीजिए कि a ≥ 1 के लिए f (x) = `sqrt3` sinx - cosx - 2ax + b, R में हासमान फलन है।


सिद्ध किजिए कि f (x) = tan–1(sinx + cosx), अतंराल 0,`pi/4` में एक वर्धमान फलन है।


किसी नगर में एक टेलीफोन कंपनी की सूची में 500 ग्राहक हैं और वह प्रत्येक ग्राहक से प्रतिवर्ष 300 रु निश्चित शुल्क वसूलती हैं। कंपनी वार्षिक शुल्क बढ़ाना चाहती है, और ऐसा माना जाता है कि प्रत्येक 1 रु की वृद्धि करने पर एक ग्राहक टेलीफोन सेवा लेना समाप्त कर देगा।ज्ञात कीजिए कि कितनी वृद्धि करने से महत्तम (उच्चतम) लाभ होगा।


भुजा x, 2x और `x/3` किसी आयताकार समांतर षट्फलक तथा एक गोले के पृष्ठीय क्षेत्रफल का योगफल अचर दिया हुआ है। सिद्ध कीजिए कि उनके आयतन का योगफल निम्नतम होगा, यदि x गोले की त्रिज्या के तीन गुने के बराबर है। उनके आयतन के योगफल का निम्नतम मान भी ज्ञात कीजिए।


रेखा x + 3y = 8  के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।


वक्र x = t2 + 3t – 8, y = 2t2 – 2t – 5 की, बिंदु (2, -1) पर, स्पर्श रेखा की प्रवणता ______ है।


फलन f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 ______


निम्नलिखित में से कौन-सा फलन 0, `pi/2` में हासमान है,


यदि x एक वास्तविक संख्या है, तो x2 – 8x + 17 का निम्नतम मान ______


f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______


फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×