हिंदी

यदि किसी समकोण त्रिभुज की एक भुजा तथा कर्ण की लंबाईयों का योगफल दिया हुआ है, तो सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल उच्चतम है, जब उनके मध्य का कोण π3 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि किसी समकोण त्रिभुज की एक भुजा तथा कर्ण की लंबाईयों का योगफल दिया हुआ है, तो सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल उच्चतम है, जब उनके मध्य का कोण `pi/3` है।

योग

उत्तर

माना ΔABC एक समकोण त्रिभुज है जिसमें ∠B = 90° है।

माना AC = x, BC = y

∴ AB = `sqrt(x^2 - y^2)`

∠ACB = θ

माना Z = x + y ....(दिया है)

अब ΔABC, A का क्षेत्रफल = `1/2 xx "AB" xx "BC"`

⇒ A = `1/2 y * sqrt(x^2 - y^2)`

⇒ A = `1/2 y * sqrt(("Z" - y)^2 - y^2)`

दोनों पक्षों का वर्ग करने पर, हम प्राप्त करते हैं

⇒ A2 = `1/4 y^2 [("Z" - y)^2 - y^2]`

⇒ A2 = `1/4 y^2 ["Z"^2 + y^2 - 2"Z" y - y^2]`

⇒ P = `1/4 y^2 ["Z"^2 - 2"Z"y]`

⇒ P = `1/4 [y^2"Z"^2 - 2"Z"y^3]`  ....[A2 = P]

दोनों पक्षों में अंतर करना w.r.t. y हमें मिलता है

`"dP"/"dy" = 1/4 [2y"Z"^2 - 6"Z"y^2]`  .....(i)

स्थानीय उच्चिष्ठ और स्थानीय निम्निष्ठ के लिए

`"dP"/"dy"` = 0

∴ `1/4 (2y"Z"^2 - 6"Z"y^2)` = 0

⇒ `(2y"Z")/4 ("Z" - 3y)` = 0

⇒ yZ(Z – 3y) = 0

⇒ yZ ≠ 0   .....(∵ y ≠ 0 और Z ≠ 0) 

⇒ Z – 3y = 0

⇒ y = `"Z"/3`

⇒ y = `(x + y)/3`  .....(∵ Z = x + y)

⇒ 3y = x + y

⇒ 3y – y = x

⇒ 2y = x

⇒ `y/x = 1/2`

⇒ cos θ = `1/2`

∴  θ = `pi/3`

विभेदक समीकरण (i) w.r.t. y,

हमारे पास `("d"^2"P")/("dy"^2) = 1/4 [2"Z"^2 - 12"Z"y]`

`("d"^2"P")/("dy"^2)` पर y = `"Z"/3 = 1/4 [2"Z"^2 - 12"Z" * "Z"/3]`

= `1/4 [2"Z"^2 - 4"Z"^2]`

= `(-"Z"^2)/2 < 0`

इसलिए, दिए गए त्रिभुज का क्षेत्रफल अधिकतम होता है जब उसके कर्ण और एक भुजा के बीच का कोण होता है `pi/3`।

shaalaa.com
अवकलज के अनुप्रयोग
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: अवकलज के अनुप्रयोग - प्रश्नावली [पृष्ठ १३४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 25 | पृष्ठ १३४

संबंधित प्रश्न

`pi/4` अर्ध शीर्ष कोण वाले एक शांकवीय कीप (funnel) से, जिसकां शीर्ष नीचे की ओर है, कीप के पृष्ठ के क्षेत्रफल में 2cm2/sec की समान दर से उसके शीर्ष के एक छिद्र से पानी बह रहा है। पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब उसकी तिर्यंक ऊँचाई 4cm है।


सिद्ध कीजिए कि फलन f(x) = 4x3 – 18x2 + 27x – 7 का कोई उच्चिष्ठ अथवा निम्निष्ठ नहीं है।


अवकलों के प्रयोग द्वारा `sqrt(0.082)` का सन्निकट मान ज्ञात कीजिए।


किसी शांकवीय बर्तन के शीर्ष के एक छोटे छिद्र से, जिसका अक्ष ऊर्घ्वाधर है, पानी 1 cu cm/sec की दर से बह रहा है। बर्तन में पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब तिर्यक ऊँचाई 4 cm हैं। शांकवीय बर्तन का शीर्ष कोण `pi/6` है।


वक्र y = cos (x + y), –2π ≤ x ≤ 2π, की उन सभी स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा x + 2y = 0 के समांतर हैं।


यदि f (x) = `1/(4x^2 + 2x + 1)`, तो इसका उच्चतम मान ______ है।


एक पतंग 151.5 cm की ऊंचाई पर क्षैतिज दिशा में गतिमान है। यदि पतंग की चाल 10 m/s है, तो डोरी को कितनी तेजी से छोड़ा जा रहा है, जब उसकी दूरी पतंग उड़ाने वाले लड़के से 250 cm है? लड़के की ऊंचाई 1.5 m है।


एक खोखले बेलनाकार खोल, जिसकी आंतरिक तथा बाह्य त्रिज्याएँ क्रमश: 3 cm तथा 3.0005 cm हैं, में धातु के आयतन का सन्निकट मान ज्ञात कीजिए।


किसी घन का आयतन एक अचर दर से बढ़ रहा है। सिद्ध कीजिए कि उसके पृष्ठीय क्षेत्रफल की वृद्धि उसकी भुजा की व्युत्क्रमानुपाती है।


वक्र 2x = y2 तथा 2xy = k के लंबकोणीय प्रतिच्छेद के लिए प्रतिबंध ज्ञात कीजिए।


सिद्ध कीजिए कि वक्र y2 = 4x तथा x2 + y2 – 6x + 1 = 0 एक दूसरे को बिंदु (1, 2) पर स्पर्श करते हैं।


सिद्ध कीजिए कि a ≥ 1 के लिए f (x) = `sqrt3` sinx - cosx - 2ax + b, R में हासमान फलन है।


किस बिंदु पर, वक्र y = – x3 + 3x2 + 9x – 27 की प्रवणता उच्चतम है? उच्चतम प्रवणता भी ज्ञात कीजिए।


सिद्ध कीजिए कि f (x) = sinx + `sqrt3` cosx का उच्चिष्ठ मान x = `pi/6` पर है।


36 cm परिमाप वाले आयत की विमाएँ ज्ञात कीजिए जिसे उसकी भुजाओं में से किसी एक के चारों ओर घुमाने पर अधिक से अधिक सम्भव आयतन प्रसर्प (sweep) हो।


किसी समबाहु त्रिभुज की भुजाएँ  2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।


रेखा x + 3y = 8  के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।


वक्र y (1 + x2 ) = 2 – x के, उस बिंदु पर, जहाँ यह x-अक्ष को काटती है, स्पर्श रेखा का समीकरण ______


y = x(x – 3)2, x  के नीचे दिए हुए मानों के लिए हासमान है, 


फलन f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 ______


फलन f(x) = tanx – x ______ 


फलन f (x) = 2x3 – 3x2 – 12x + 4 के ______


f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______


वक् y = 4x2 + 2x – 8 तथा, y = x3 – x + 13 एक दूसरे को बिंदु ______ पर स्पर्श करते हैं।


a के वे मान जिनके लिए फलन f (x) = sinx – ax + b, R में वर्धमान है ______ .हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×