हिंदी

2m लंबा एक मनुष्य 123 m/s की दर से किसी बिजली के खंभे की ओर, जो जमीन से 513m ऊपर है, चल रहा है। उसकी छाया का अग्रभाग किसी दर से गतिमान है? - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

2m लंबा एक मनुष्य 1`2/3` m/s की दर से किसी बिजली के खंभे की ओर, जो जमीन से 5`1/3`m ऊपर है, चल रहा है। उसकी छाया का अग्रभाग किसी दर से गतिमान है? उसकी छाया की लंबाई, उस समय किस दर से परिवर्तित हो रही है, जब वह प्रकाश के स्रोत के आधार से 3`1/3`m दूर है?

योग

उत्तर

माना AB बिजली के खंभे की ऊंचाई है और CD आदमी की ऊंचाई इस प्रकार है कि

AB = `5 1/3 = 16/3 "m"` और CD = 2 m

माना BC = x लंबाई (बिजली के खम्भे से आदमी की दूरी) और CE = y किसी भी समय आदमी की छाया की लंबाई है।

आकृति से, हम देखते हैं कि

ΔABE ~ Δ DCE   ......[AAA समानता द्वारा]

∴ उनकी संगत भुजाओं का अनुपात लेते हुए, हम प्राप्त करते हैं

`"AB"/"CD" = "BE"/"CE"`

⇒ `"AB"/"CD" = ("BC" + "CE")/"CE"`

⇒ `(16/3)/2 = (x + y)/y`

⇒ `8/3 = (x + y)/y`

⇒ 8y = 3x + 3y

⇒ 8y – 3y = 3x

⇒ 5y = 3x

दोनों पक्षों को w.r.t, t, से अलग करने पर, हम प्राप्त करते हैं

`"dy"/"dt" = 3 * "dx"/dt"`

⇒ `"dy"/"dt" = 3/5 * "dx"/"dt"`

⇒ `"dy"/"dt" = 3/5 * ((-5)/3)`   ......[∵ आदमी विपरीत दिशा में चल रहा है]

= – 1 m/s

अतः छाया की लंबाई 1 m/s की दर से घट रही है।

अब मान लीजिए u = x + y   .....(u = प्रकाश स्तंभ से छाया के सिरे की दूरी)

दोनों पक्षों में अंतर करना w.r.t. t, हमें मिलता है

`"du"/"dt" = "dx"/"dt" + "dy"/dt"`

= `(- 1 2/3 - 1)`

= `-(5/3 + 1)`

= `- 8/3`

= `-2 2/3` m/s

अतः छाया का सिरा `2 2/3` m/s की दर से प्रकाश स्तंभ की ओर गति कर रहा है तथा छाया की लंबाई 1 m/s की दर से घट रही है।

shaalaa.com
अवकलज के अनुप्रयोग
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: अवकलज के अनुप्रयोग - प्रश्नावली [पृष्ठ १३३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 8 | पृष्ठ १३३

संबंधित प्रश्न

वक्र  y = 5x – 2x3 के लिए, यदि x में 2 इकाई/से. की दर से वृद्धि हो रही है, तो x = 3 पर वक्र का प्रावण्य कितनी तीव्रता से परिवर्तित हो रहा है?


सिद्ध कीजिए कि फलन f(x) = tanx – 4x  अंतराल `((-pi)/3, pi/3)` निरंतर हासमान है।


निर्धारित कीजिए कि x के किन मानों के लिए, फलन y = `x^4 – (4x^3)/3` वर्धमान है तथा किन मानों के लिए, यह हासमान है।


सिद्ध कीजिए कि फलन f(x) = 4x3 – 18x2 + 27x – 7 का कोई उच्चिष्ठ अथवा निम्निष्ठ नहीं है।


अवकलों के प्रयोग द्वारा `sqrt(0.082)` का सन्निकट मान ज्ञात कीजिए।


सिद्ध कीजिए कि `x + 1/x` का स्थानीय उच्चतम मीन उसके स्थानीय निम्नतम मान से कम है।


किसी शांकवीय बर्तन के शीर्ष के एक छोटे छिद्र से, जिसका अक्ष ऊर्घ्वाधर है, पानी 1 cu cm/sec की दर से बह रहा है। बर्तन में पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब तिर्यक ऊँचाई 4 cm हैं। शांकवीय बर्तन का शीर्ष कोण `pi/6` है।


अंतराल `[-pi/2, pi/2]` में फलन f (x) = sin2x – x, के उच्चतम तथा निम्नितम मानों का अंतर ज्ञात कीजिए।


यदि f (x) = `1/(4x^2 + 2x + 1)`, तो इसका उच्चतम मान ______ है।


sinx + cosx का उच्चिष्ठ मान ______ है।


यदि किसी वृत्त का क्षेत्रफल एक समान दर से बढ़ता है, तो सिद्ध कीजिए कि उसका परिमाप (परिधि) उसकी त्रिज्या के व्युत्क्रमानुपाती होता है


एक दूसरे से 45° पर झुकी हुई दो सड़कों के संधि-स्थल से दो मनुष्य A तथा B, एक ही समय v वेग से चलना प्रारम्भ करते हैं। यदि वे अलग-अलग सड़कों पर चलते हैं तो उनके परस्पर एक दूसरे से अलग होने की दर ज्ञात कीजिए।


किसी तरनताल को सफाई के लिए खाली करना है।यदि ताल को बंद करने के t seconds बाद ताल में पानी की मात्रा, लिटर में, L से निरूपित होती है तथा L = 200 (10 – t)2 तो 5 seconds में अंत में पानी कितनी तेजी से बाहर निकल रहा है? प्रथम 5 seconds में पानी के बाहर निकलने की औसत दर क्या है?


किसी घन का आयतन एक अचर दर से बढ़ रहा है। सिद्ध कीजिए कि उसके पृष्ठीय क्षेत्रफल की वृद्धि उसकी भुजा की व्युत्क्रमानुपाती है।


वक्र `sqrt(x) + sqrt(y) = 4` उस बिंदु के निर्देशांक ज्ञात कीजिए, जिस पर स्पर्श रेखा का अक्षों से झुकाव समान है।


सिद्ध कीजिए कि a ≥ 1 के लिए f (x) = `sqrt3` sinx - cosx - 2ax + b, R में हासमान फलन है।


यदि सरल रेखा x cosα + y sinα = p वक्र `x^2/"a"^2 + y^2/"b"^2` = 1 को स्पर्श करती है, तो सिद्ध कीजिए कि a2 cos2α + b2 sin2α = p2 


c2 क्षेत्रफल के किसी दिए हुए गत्ते से वर्गाकार आधार का एक खुला हुआ बाक्स बनाना है। सिद्ध कीजिए कि बाक्स का महत्तम आयतन `c^3/(6sqrt3)` घन इकाई है।


यदि किसी घन तथा गोले के पृष्ठीय क्षेत्रफल का योगफल अचर है तो घन के एक कोर (edge) तथा गोले के व्यास का अनुपात उस समय क्या है जब उनके आयतन का योगफल निम्नतम है?


रेखा x + 3y = 8  के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।


वक्र y = e2x की, बिंदु (0, 1) पर, स्पर्श रेखा x-अक्ष से बिंदु  ______


 वह अंतराल, जिसमें फलन f (x) = 2x3 + 9x2 + 12x – 1 हासमान है,


y = x(x – 3)2, x  के नीचे दिए हुए मानों के लिए हासमान है, 


निम्नलिखित में से कौन-सा फलन 0, `pi/2` में हासमान है,


f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______


 f(x) = xx  का स्तब्ध बिंदु है ______


वक्र y = tanx के (0, 0) पर अभिलंब का समीकरण ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×