English

भुजा x, 2x और x3 किसी आयताकार समांतर षट्फलक तथा एक गोले के पृष्ठीय क्षेत्रफल का योगफल अचर दिया हुआ है। सिद्ध कीजिए कि उनके आयतन का योगफल निम्नतम होगा, - Mathematics (गणित)

Advertisements
Advertisements

Question

भुजा x, 2x और `x/3` किसी आयताकार समांतर षट्फलक तथा एक गोले के पृष्ठीय क्षेत्रफल का योगफल अचर दिया हुआ है। सिद्ध कीजिए कि उनके आयतन का योगफल निम्नतम होगा, यदि x गोले की त्रिज्या के तीन गुने के बराबर है। उनके आयतन के योगफल का निम्नतम मान भी ज्ञात कीजिए।

Sum

Solution

यह दिया गया है कि, एक आयताकार समानांतर चतुर्भुज के सतह क्षेत्रों का योग x, 2x और `x/3` और एक क्षेत्र स्थिर है।

मान लीजिए S दोनों पृष्ठीय क्षेत्रफल का योग है।

∴ S = 2`(x * 2x + 2x * x/3  +x/3 * x) + 4pi"r"^2` = k

⇒ `4pi"r"^2 = "k" - 6x^2`

⇒ r2 = `("k" - 6x^2)/(4pi)`

⇒ r = `sqrt(("k" - 6x^2)/(4pi)`  .....(i)

मान लीजिए V समानांतर चतुर्भुज और गोले दोनों के आयतन के योग को दर्शाता है।

फिर, V = `2x * x * x/3 + 4/3 pi"r"^3`

= `2/3 x^3 + 4/3 pi"r"^3`

= `2/3 x^3 + 4/3pi(("kk" - 6x^2)/(4pi))^(3/2)`

= `2/3 x^3 + 4/3 pi (("k" - 6x^2)/(4pi))^(3/2)`

⇒ V = `2/3 x^3 + 1/(6sqrt(pi)) ("k" - 6x^2)^(3/2)`  ....(ii)

विभेदक w.r.t. x,

`"dV"/"dx" = 2/3 * 3x^2 + 1/(6sqrt(pi)) * 3/2 * ("k" - 6x^2)^(1/2)(-12x)`

= `2x^2 - (3x)/sqrt(pi) ("k" - 6x^2)^(1/2)`  ....(iii)

मान लीजिए `"dV"/"dx"` = 0

⇒ `2x^2 = (3x)/sqrt(pi) ("k" - 6x^2)^(1/2)`

⇒ `4x^4 = (9x^2)/pi ("k" - 6x^2)`

⇒ `4pix^4 = 9"k"x^2 - 54x^4`

⇒ `x^2 = (9"k")/(4pi + 54)`

⇒ x = `3sqrt("k"/(4pi + 54))`  .....(iv)

स्पष्ट रूप से यह बिंदु न्यूनतम है।

जब x = `3sqrt("k"/(4pi + 54))`

`"r"^2 = ("k" - 6) ((9"k")/(4pi + 54))/(4pi)`

= `("k"(4pi + 54) - 54"k")/(4pi(4pi + 54))`

= `(4"k"pi)/(4pi(4pi + 54))`

= `"k"/(4pi + 54)`

⇒ r = `sqrt("k"/(4pi + 54))`

⇒ x = 3r

साथ ही V = `2/3x^3 + 4/3 pi"r"^3`

= `2/3(3"r")^3 + 4/3 pi"r"^3`

= `18"r"^3 + 4/3 pi"r"^3`

= `(18 + 4/3 pi)"r"^3`

= `((54 + 4pi)/3)("k"/(4pi + 54))^(3/2)`

= `"k"^(3/2)/(3(4pi + 54)^(3/2)`

shaalaa.com
अवकलज के अनुप्रयोग
  Is there an error in this question or solution?
Chapter 6: अवकलज के अनुप्रयोग - प्रश्नावली [Page 135]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 34 | Page 135

RELATED QUESTIONS

अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।

(33)-1/5


सिद्ध कीजिए कि f (x) = `(log x)/x` द्वारा प्रदत्त फलन x = e पर उच्चतम है।


वक्र  y = 5x – 2x3 के लिए, यदि x में 2 इकाई/से. की दर से वृद्धि हो रही है, तो x = 3 पर वक्र का प्रावण्य कितनी तीव्रता से परिवर्तित हो रहा है?


वक्र y2 = x तथा x2 = y के बीच का प्रतिच्छेद - कोण ज्ञात कीजिए।


सिद्ध कीजिए कि फलन f(x) = tanx – 4x  अंतराल `((-pi)/3, pi/3)` निरंतर हासमान है।


अवकलों के प्रयोग द्वारा `sqrt(0.082)` का सन्निकट मान ज्ञात कीजिए।


सिद्ध कीजिए कि `x + 1/x` का स्थानीय उच्चतम मीन उसके स्थानीय निम्नतम मान से कम है।


सिद्ध कीजिए कि वक्र x = 3cos θ – cos3θ, y = 3sinθ – sin3θ के किसी बिंदु पर अभिंलब का समीकरण 4 (y cos3θ – x sin3θ) = 3 sin 4θ 


उस महत्तम आयत का क्षेत्रफल ज्ञात कीजिए, जो दीर्घवृत्त `x^2/a^2 + y^2/b^2` = 1 के अंतर्गत स्थित है।


अंतराल `[-pi/2, pi/2]` में फलन f (x) = sin2x – x, के उच्चतम तथा निम्नितम मानों का अंतर ज्ञात कीजिए।


शीर्ष कोण `2theta` वाला एक समद्धिबाहु त्रिभुज a त्रिज्या वाले किसी वृत्त के अंतर्गत स्थित है। सिद्ध कीजिए कि त्रिभुजं का क्षेत्रफल उच्चतम है। जब `theta = pi/6`


दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 = 2


वक्र y = sinx के बिंदु (0, 0) पर अभिलंब का समीकरण:


नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।


नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।


2m लंबा एक मनुष्य 1`2/3` m/s की दर से किसी बिजली के खंभे की ओर, जो जमीन से 5`1/3`m ऊपर है, चल रहा है। उसकी छाया का अग्रभाग किसी दर से गतिमान है? उसकी छाया की लंबाई, उस समय किस दर से परिवर्तित हो रही है, जब वह प्रकाश के स्रोत के आधार से 3`1/3`m दूर है?


वक्र 2x = y2 तथा 2xy = k के लंबकोणीय प्रतिच्छेद के लिए प्रतिबंध ज्ञात कीजिए।


वक्र `sqrt(x) + sqrt(y) = 4` उस बिंदु के निर्देशांक ज्ञात कीजिए, जिस पर स्पर्श रेखा का अक्षों से झुकाव समान है।


सिद्ध कीजिए कि रेखा `x/"a" +y/"b"` = 1 , वक्र y = b . e-x/a को उस बिंदु पर स्पर्श करती है जिस पर वक्र y-अक्ष को काटता है।


फलन f (x) = x5 – 5x4 + 5x3 – 1 के स्थानीय उच्चिष्ठ, स्थानीय निम्निष्ठ तथा नति परिवर्तन के बिंदुओं को ज्ञात कीजिए। साथ ही संगत स्थानीय उच्चतम तथा स्थानीय निम्नतम मानों को भी ज्ञात कीजिए।


36 cm परिमाप वाले आयत की विमाएँ ज्ञात कीजिए जिसे उसकी भुजाओं में से किसी एक के चारों ओर घुमाने पर अधिक से अधिक सम्भव आयतन प्रसर्प (sweep) हो।


 बिंदु (0, 0) पर वक्र y = `x^(1/5)` की ______


वे बिंदु, जिन पर वक्र y = x3 – 12x + 18 की स्पर्श रेखाएँ x-अक्ष के समांतर हैं,


दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 – 2 = 0 किस कोण पर प्रतिच्छेद करते हैं:


मान लीजिए कि f : R → R, f (x) = 2x + cosx द्वारा परिभाषित है, तो f ______


फलन f (x) = 2x3 – 3x2 – 12x + 4 के ______


वक् y = –x3 + 3x2 + 9x – 27 की उच्चतम प्रवणता ______


`(1/x)^x`का उच्चतम मान है ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×