Advertisements
Advertisements
Question
दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 – 2 = 0 किस कोण पर प्रतिच्छेद करते हैं:
Options
`pi/4`
`pi/3`
`pi/2`
`pi/6`
Solution
सही उत्तर `underline(pi/2)`है।
व्याख्या:
दिए गए वक्र हैं x3 – 3xy2 + 2 = 0 .....(i)
और 3x2y – y3 – 2 = 0 ......(ii)
विभेदक समीकरण (i) w.r.t. x, हमें मिलता है
`3x^2 - 3 * (x * 2y "dy"/"dx" + y^2 * 1)` = 0
⇒ `x^2 - 2xy "dy"?'dx" - y^2` = 0
⇒ `2xy "dy"/"dx"` = x2 – y2
∴ `"dy"/"dx" = (x^2 - y^2)/(2xy)`
अतः वक्र का ढाल m1 = `(x^2 - y^2)/(2xy)`
विभेदक समीकरण (ii) w.r.t. x, हमें मिलता है
`3[x^2 "dy"/"dx" + y * 2x] - 3y^2 * "dy"/"dx"` = 0
`x^2 "dy"/"dx" + 2xy - y^2 "dy"/"dx"` = 0
⇒ `(x^3 - y^2) "dy"/"dx"` = – 2xy
∴ `"dy"/"dx" = (-2xy)/(x^2 - y^2)`
तो वक्र का ढलान m2 = `(-2xy)/(x^2 - y^2)`
अब m1 × m2 = `(x^2 - y^2)/(2xy) xx (-2xy)/(x^2 - y^2)` = – 1
अतः वक्रों के बीच का कोण `pi/2` है।
APPEARS IN
RELATED QUESTIONS
अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।
(33)-1/5
सिद्ध कीजिए कि f (x) = `(log x)/x` द्वारा प्रदत्त फलन x = e पर उच्चतम है।
वक्र y = 5x – 2x3 के लिए, यदि x में 2 इकाई/से. की दर से वृद्धि हो रही है, तो x = 3 पर वक्र का प्रावण्य कितनी तीव्रता से परिवर्तित हो रहा है?
अवकलों के प्रयोग द्वारा `sqrt(0.082)` का सन्निकट मान ज्ञात कीजिए।
वक्र y = cos (x + y), –2π ≤ x ≤ 2π, की उन सभी स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा x + 2y = 0 के समांतर हैं।
अंतराल `[-pi/2, pi/2]` में फलन f (x) = sin2x – x, के उच्चतम तथा निम्नितम मानों का अंतर ज्ञात कीजिए।
वक्र y = sinx के बिंदु (0, 0) पर अभिलंब का समीकरण:
वक्र y2 = x पर वह बिंदु जहाँ स्पर्श रेखा x-अक्ष से `pi/4` कोण बनाती है।
यदि f (x) = `1/(4x^2 + 2x + 1)`, तो इसका उच्चतम मान ______ है।
यदि f (x) = sinx तो अंतराल `[(-pi)/2, pi/2]` में f का निम्निष्ठ मान ______ है।
किसी गोले के आयतन के परिवर्तन की दर उसके पृष्ठीय क्षेत्रफल के सापेक्ष, जब उसकी त्रिज्या 2cm है, ______ है।
यदि किसी वृत्त का क्षेत्रफल एक समान दर से बढ़ता है, तो सिद्ध कीजिए कि उसका परिमाप (परिधि) उसकी त्रिज्या के व्युत्क्रमानुपाती होता है
(1.999)5 का सन्निकट मान ज्ञात कीजिए।
वक्र 2x = y2 तथा 2xy = k के लंबकोणीय प्रतिच्छेद के लिए प्रतिबंध ज्ञात कीजिए।
वक्र x2 + y2 – 2x – 4y + 1 = 0 के किन बिंदुओं पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।
यदि सरल रेखा x cosα + y sinα = p वक्र `x^2/"a"^2 + y^2/"b"^2` = 1 को स्पर्श करती है, तो सिद्ध कीजिए कि a2 cos2α + b2 sin2α = p2
AB किसी वृत्त का एक व्यास है तथा C उसकी परिधि पर कोई बिंदु है। सिद्ध कीजिए कि ∆ ABC का क्षेत्रफल महत्तम उस समय होगा जब वह समद्धिबाहु है।
किसी समबाहु त्रिभुज की भुजाएँ 2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।
वक्र y (1 + x2 ) = 2 – x के, उस बिंदु पर, जहाँ यह x-अक्ष को काटती है, स्पर्श रेखा का समीकरण ______
वक्र y = e2x की, बिंदु (0, 1) पर, स्पर्श रेखा x-अक्ष से बिंदु ______
मान लीजिए कि f : R → R, f (x) = 2x + cosx द्वारा परिभाषित है, तो f ______
फलन f(x) = tanx – x ______
यदि x एक वास्तविक संख्या है, तो x2 – 8x + 17 का निम्नतम मान ______
बहुपद x3 – 18x2 + 96x का, अंतराल [0, 9] में, निम्नतम मान ______
f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______
`(1/x)^x`का उच्चतम मान है ______
a के वे मान जिनके लिए फलन f (x) = sinx – ax + b, R में वर्धमान है ______ .हैं।
फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।