हिंदी

Dydydydx=y+1x-1, जब y (1) = 2 है के हलों की संख्या है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`("dy")/("d"x) = ("y" + 1)/(x - 1)`, जब y (1) = 2 है के हलों की संख्या है।

विकल्प

  • कोई नहीं

  • एक

  • दो

  • अनंत

MCQ

उत्तर

सही उत्तर एक है। 

व्याख्या:

दिया गया अवकल समीकरण `("dy")/("d"x) = ("y" + 1)/(x - 1)`  है

⇒ `("dy")/("y" + 1) = ("d"x)/(x - 1)`

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

`int ("dy")/("y" + 1) = int ("d"x)/(x - 1)`

⇒ log(y + 1) = log(x – 1) + log c

⇒ log(y + 1) – log(x – 1) = log c

⇒ `log|("y" + 1)/(x - 1)|` = log c

⇒ `("y" + 1)/(x - 1)` = c

x = 1 और y = 2 रखिए

⇒ `(2 + 1)/(1 - 1)` = c

∴ c = `oo`

∴ `("y" +1)/(x - 1) = 1/0`

⇒ x – 1 = 0

⇒ x = 1.

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 45 | पृष्ठ १९२

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`xdy/dx + 2y = x^2 log x`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।

`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है


अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है


अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।


जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।


दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


ydx – xdy = x2 ydx को हल कीजिए।


अवकल समीकरण  `"dy"/"dx"` = 1 + x + y2 + xy2,  को हल कीजिए जब y = 0, x = 0


अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है


अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है


यदि y = e–x (Acosx + Bsinx) तब y एक हल है


अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है


अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है


`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है


वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है


अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है


अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।


 `("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।


वक्रों के कुल y = ex (Acosx + Bsinx)  को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0  है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×