Advertisements
Advertisements
प्रश्न
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
2x + 3y = 7 और 2px + py = 28 – qy,
यदि समीकरण-युग्म के अपरिमित रूप से अनेक हल हैं।
उत्तर
रैखिक समीकरणों का दिया गया युग्म है।
2x + 3y = 7
2px + py = 28 – qy
or 2px + (p + q)y – 28 = 0
ax + by + c = 0 से तुलना करने पर, हमें मिलता है।
यहाँ, a1 = 2, b1 = 3, c1 = – 7
और a2 = 2p, b2 = (p + q), c2 = – 28
`a_1/a_2 = 2/(2p)`
`b_1/b_2 = 3/(p + q)`
`c_1/c_2 = 1/4`
चूँकि, समीकरण युग्म के अपरिमित रूप से अनेक हल हैं, अर्थात् दोनों रेखाएँ संपाती हैं।
`a_1/a_2 = b_1/b_2 = c_1/c_2`
`1/p = 3/(p + q) = 1/4`
पहला और तीसरा भाग लेने पर, हमें मिलता है।
p = 4
फिर से, अंतिम दो भागों को लेने पर, हमें मिलता है।
`3/(p + q) = 1/4`
p + q = 12
चूँकि, p = 4
तो, q = 8
यहाँ, हम देखते हैं कि p = 4 और q = 8 के मान तीनों भागों को संतुष्ट करते हैं।
इसलिए, p = 4 और q = 8 के सभी मानों के लिए समीकरण युग्म के अपरिमित रूप से अनेक हल हैं।
APPEARS IN
संबंधित प्रश्न
आफ़ताब अपनी पुत्री से कहता है, 'सात वर्ष पूर्व मैं तुमसे सात गुनी आयु का था। अब से 3 वर्ष बाद मैं तुमसे केवल तीन गुनी आयु का रह जाऊँगा। (क्या यह मनोरंजक है?)' इस स्थिति को बीजगणितीय एवं ग्राफीय रूपों में व्यक्त कीजिए।
अनुपातों `bb(a_1/a_2, b_1/b_2)` और `(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:
5x - 4y + 8 = 0
7x + 6y - 9 = 0
अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:
9x + 3y + 12 = 0
18x + 6y + 24 = 0
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
ax + by = c
bx + ay = 1 + c
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
(a - b)x + (a + b)y = a2 - 2ab - b2
(a + b)(x + y) = a2 + b2
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
152x - 378y = -74
-378x + 152y = -604
एक अद्वितीय हल x = 2, y = –3 वाले समीकरण का एक युग्म है ______।
यदि x = a और y = b समीकरणों x – y = 2 और x + y = 4, का हल है, तो a और b के मान क्रमश : हैं ______।
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
– x + py = 1 और px – y = 1,
यदि समीकरण-युग्म का कोई हल नहीं है।
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
2x + 3y – 5 = 0 और px – 6y – 8 = 0,
यदि समीकरण-युग्म का एक अद्वितीय हल है।