Advertisements
Advertisements
प्रश्न
निम्नलिखित संख्याओं का HCF ज्ञात करने के लिए यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग कीजिए:
135 और 225
उत्तर
यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग 135 और 225 में करने पर, (225>135)
225 = 135 × 1 + 90
शेषफल, 90 ≠ 0, अतः यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग 135 और 90 में करने पर,
135 = 90 × 1 + 45,
शेषफल 45 ≠ 0
इसी प्रकार, 90 = 45 × 2 + 0
चूंकि शेषफल = 0, अतः प्रक्रिया यहीं समाप्त करते हैं |
यहां भाजक 45 है और शेषफल शून्य है अतः 135 और 225 का HCF 45 हैं।
APPEARS IN
संबंधित प्रश्न
किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करना है। दोनों समूहों को समान संख्या वाले स्तंभों में मार्च करना है। उन स्तंभों की अधिकतम संख्या क्या है, जिसमें वे मार्च कर सकते हैं?
"तीन क्रमागत धनात्मक पूर्णांकों का गुणनफल 6 से विभाज्य है।" क्या यह कथन सत्य है या असत्य? अपने उत्तर का औचित्य दीजिए।
लिखिए कि क्या किसी धनात्मक पूर्णांक का वर्ग 3m + 2 के रूप का हो सकता है, जहाँ m एक प्राकृत संख्या है। अपने उत्तर का औचित्य दीजिए।
दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक q के लिए, 5q + 2 या 5q + 3 के रूप का नहीं हो सकता।
दर्शाइए कि किसी पूर्णांक q के लिए, किसी विषम पूर्णांक का वर्ग 4q+1 के रूप का होता है।
यदि n एक विषम पूर्णांक है, तो दर्शाइए कि n2 − 1, 8 से विभाज्य है।
यूक्लिड की विभाजन एल्गोरिथ्म का प्रयोग करते हुए, ऐसी सबसे बड़ी संख्या ज्ञात कीजिए, जिससे 1251, 9377 और 15628 को भाग देने पर शेषफल क्रमशः 1, 2 और 3 प्राप्त हो।
दर्शाइए कि 6q + r के रूप के एक धनात्मक पूर्णांक का घन भी, जहाँ q एक पूर्णांक है तथा r = 0, 1, 2, 3, 4, 5 हैं, 6m + r के रूप का होता है। जहाँ m एक पूर्णांक है।
सिद्ध कीजिए कि किन्हीं तीन क्रमागत धनात्मक पूर्णांकों में से एक पूर्णांक 3 से अवश्य ही विभाज्य होना चाहिए।
सिद्ध कीजिए कि किसी धनात्मक पूर्णांक n के लिए संख्या n3 − n, 6 से विभाज्य है।