हिंदी

O is any point on the diagonal PR of a parallelogram PQRS (Figure). Prove that ar (PSO) = ar (PQO). - Mathematics

Advertisements
Advertisements

प्रश्न

O is any point on the diagonal PR of a parallelogram PQRS (Figure). Prove that ar (PSO) = ar (PQO).

योग

उत्तर


Given: In a parallelogram PQRS, O is any point on the diagonal PR.

To prove: ar (ΔPSO) = ar (ΔPQO)

Construction: Join SQ which intersect PR at B.

Proof: We know that, diagonals of a parallelogram bisect each other, so B is the mid-point of SQ.

Here, PB is a median of ΔQPS and we know that, a median of a triangle divides it into two triangles of equal area.

∴ ar (ΔBPQ) = ar (ΔBPS)  ...(i)

Also, OB is the median of ΔOSQ.

∴ ar (ΔOBQ) = ar (ΔOBS)  ...(ii)

On adding equations (i) and (ii), we get

ar (ΔBPQ) + ar (ΔOBQ) = ar (ΔBPS) + ar (ΔOBS)

⇒ ar (ΔPQO) = ar (ΔPSO)

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Areas of Parallelograms & Triangles - Exercise 9.3 [पृष्ठ ९१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
अध्याय 9 Areas of Parallelograms & Triangles
Exercise 9.3 | Q 6. | पृष्ठ ९१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

D and E are points on sides AB and AC respectively of ΔABC such that

ar (DBC) = ar (EBC). Prove that DE || BC.


In the given figure, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that

(i) ar (ACB) = ar (ACF)

(ii) ar (AEDF) = ar (ABCDE)


ABCD is a trapezium with AB || DC. A line parallel to AC intersects AB at X and BC at Y. Prove that ar (ADX) = ar (ACY). 

[Hint: Join CX.]


In the following figure, D and E are two points on BC such that BD = DE = EC. Show that ar (ABD) = ar (ADE) = ar (AEC).

Can you answer the question that you have left in the ’Introduction’ of this chapter, whether the field of Budhia has been actually divided into three parts of equal area?

[Remark: Note that by taking BD = DE = EC, the triangle ABC is divided into three triangles ABD, ADE and AEC of equal areas. In the same way, by dividing BC into n equal parts and joining the points of division so obtained to the opposite vertex of BC, you can divide ΔABC into n triangles of equal areas.]


In the following figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that

(i) ar (BDE) = 1/4 ar (ABC)

(ii) ar (BDE) = 1/2 ar (BAE)

(iii) ar (ABC) = 2 ar (BEC)

(iv) ar (BFE) = ar (AFD)

(v) ar (BFE) = 2 ar (FED)

(vi) ar (FED) = 1/8 ar (AFC)

[Hint : Join EC and AD. Show that BE || AC and DE || AB, etc.]


If a triangle and a parallelogram are on the same base and between same parallels, then the ratio of the area of the triangle to the area of parallelogram is ______.


ABCD is a parallelogram and X is the mid-point of AB. If ar (AXCD) = 24 cm2, then ar (ABC) = 24 cm2.


In ∆ABC, D is the mid-point of AB and P is any point on BC. If CQ || PD meets AB in Q (Figure), then prove that ar (BPQ) = `1/2` ar (∆ABC).


In the following figure, CD || AE and CY || BA. Prove that ar (CBX) = ar (AXY).


In the following figure, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove that ar (ABCDE) = ar (APQ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×