हिंदी

In the following figure, D and E are two points on BC such that BD = DE = EC. Show that ar (ABD) = ar (ADE) = ar (AEC). - Mathematics

Advertisements
Advertisements

प्रश्न

In the following figure, D and E are two points on BC such that BD = DE = EC. Show that ar (ABD) = ar (ADE) = ar (AEC).

Can you answer the question that you have left in the ’Introduction’ of this chapter, whether the field of Budhia has been actually divided into three parts of equal area?

[Remark: Note that by taking BD = DE = EC, the triangle ABC is divided into three triangles ABD, ADE and AEC of equal areas. In the same way, by dividing BC into n equal parts and joining the points of division so obtained to the opposite vertex of BC, you can divide ΔABC into n triangles of equal areas.]

उत्तर

Let us draw a line segment AM ⊥ BC.

We know that,

Area of a triangle = 1/2 × Base × Altitude

`"Area "(triangleADE)=1/2xxDExxAM`

`"Area "(triangleABD)=1/2xxBDxxAM`

`"Area "(triangleAEC)=1/2xxECxxAM`

It is given that DE = BD = EC

`⇒ 1/2xxDExxAM=1/2xxBDxxAM=1/2xxECxxAM`

⇒ Area (ΔADE) = Area (ΔABD) = Area (ΔAEC)

It can be observed that Budhia has divided her field into 3 equal parts.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Areas of Parallelograms and Triangles - Exercise 9.4 [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 9 Areas of Parallelograms and Triangles
Exercise 9.4 | Q 2 | पृष्ठ १६४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

D, E and F are respectively the mid-points of the sides BC, CA and AB of a ΔABC. Show that

(i) BDEF is a parallelogram.

(ii) ar (DEF) = 1/4ar (ABC)

(iii) ar (BDEF) = 1/2ar (ABC)


In a ΔABC, P and Q are respectively the mid-points of AB and BC and R is the mid-point
of AP. Prove that :

(1) ar (Δ PBQ) = ar (Δ ARC)

(2) ar (Δ PRQ) =`1/2`ar (Δ ARC)

(3) ar (Δ RQC) =`3/8` ar (Δ ABC) .


In the below fig. D and E are two points on BC such that BD = DE = EC. Show that ar
(ΔABD) = ar (ΔADE) = ar (ΔAEC).


In a ΔABC, if L and M are points on AB and AC respectively such that LM || BC. Prove
that:

(1) ar (ΔLCM ) = ar (ΔLBM )
(2) ar (ΔLBC) = ar (ΔMBC)
(3) ar (ΔABM) ar (ΔACL)
(4) ar (ΔLOB) ar (ΔMOC)


If a triangle and a parallelogram are on the same base and between same parallels, then the ratio of the area of the triangle to the area of parallelogram is ______.


The area of the parallelogram ABCD is 90 cm2 (see figure). Find ar (ΔBEF)


A point E is taken on the side BC of a parallelogram ABCD. AE and DC are produced to meet at F. Prove that ar (ADF) = ar (ABFC)


In the following figure, CD || AE and CY || BA. Prove that ar (CBX) = ar (AXY).


In the following figure, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove that ar (ABCDE) = ar (APQ)


In the following figure, X and Y are the mid-points of AC and AB respectively, QP || BC and CYQ and BXP are straight lines. Prove that ar (ABP) = ar (ACQ).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×