हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

P the String, the Spring and the Pulley Shown in Figure Are Light. Find the Time Period of the Mass M. - Physics

Advertisements
Advertisements

प्रश्न

The string the spring and the pulley shown in figure are light. Find the time period of the mass m.

योग

उत्तर

Let l be the extension in the spring when mass m is hung.

Let T1 be the tension in the string; its value is given by,
T1 = kl = mg 
Let x be the extension in the string on applying a force F.
Then, the new value of tension T2 is given by,
 T2 = k(x + l)
Driving force is the difference between tensions T1 and T2.
∴ Driving force = T2 − T1 = k(x + l) − kl
                           = kx

\[\text{Acceleration},   a = \frac{kx}{m}\] 

\[\text { Time  period } \left( T \right)\]  is  given  by, 

\[T = 2\pi\sqrt{\frac{\text { displacement }}{\text { Acceleration }}}\] 

\[     = 2\pi\sqrt{\frac{x}{kx/m}} = 2\pi\sqrt{\frac{m}{k}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - Exercise [पृष्ठ २५४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
Exercise | Q 23 | पृष्ठ २५४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which of the following example represent periodic motion?

An arrow released from a bow.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

General vibrations of a polyatomic molecule about its equilibrium position.


Answer in brief:

Derive an expression for the period of motion of a simple pendulum. On which factors does it depend?


A particle executes simple harmonic motion under the restoring force provided by a spring. The time period is T. If the spring is divided in two equal parts and one part is used to continue the simple harmonic motion, the time period will


Two bodies A and B of equal mass are suspended from two separate massless springs of spring constant k1 and k2 respectively. If the bodies oscillate vertically such that their maximum velocities are equal, the ratio of the amplitude of A to that of B is


A particle moves in a circular path with a uniform speed. Its motion is


A particle is fastened at the end of a string and is whirled in a vertical circle with the other end of the string being fixed. The motion of the particle is


The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitude 2 cm, 1 m s−1 and 10 m s−2 at a certain instant. Find the amplitude and the time period of the motion.


A spring stores 5 J of energy when stretched by 25 cm. It is kept vertical with the lower end fixed. A block fastened to its other end is made to undergo small oscillations. If the block makes 5 oscillations each second what is the mass of the block?


A small block of mass m is kept on a bigger block of mass M which is attached to a vertical spring of spring constant k as shown in the figure. The system oscillates vertically. (a) Find the resultant force on the smaller block when it is displaced through a distance x above its equilibrium position. (b) Find the normal force on the smaller block at this position. When is this force smallest in magnitude? (c) What can be the maximum amplitude with which the two blocks may oscillate together?


The left block in figure moves at a speed v towards the right block placed in equilibrium. All collisions to take place are elastic and the surfaces are frictionless. Show that the motions of the two blocks are periodic. Find the time period of these periodic motions. Neglect the widths of the blocks.


The period of oscillation of a body of mass m1 suspended from a light spring is T. When a body of mass m2 is tied to the first body and the system is made to oscillate, the period is 2T. Compare the masses m1 and m2


A simple pendulum is inside a spacecraft. What will be its periodic time? 


Which of the following example represent periodic motion?

A swimmer completing one (return) trip from one bank of a river to the other and back.


The equation of motion of a particle is x = a cos (αt)2. The motion is ______.


What are the two basic characteristics of a simple harmonic motion?


Show that the motion of a particle represented by y = sin ωt – cos ωt is simple harmonic with a period of 2π/ω.


The time period of a simple pendulum is T inside a lift when the lift is stationary. If the lift moves upwards with an acceleration `g/2`, the time period of the pendulum will be ______.


A particle performs simple harmonic motion with a period of 2 seconds. The time taken by the particle to cover a displacement equal to half of its amplitude from the mean position is `1/a` s. The value of 'a' to the nearest integer is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×