हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

P a Spring Stores 5 J of Energy When Stretched by 25 Cm. It is Kept Vertical with the Lower End Fixed. - Physics

Advertisements
Advertisements

प्रश्न

A spring stores 5 J of energy when stretched by 25 cm. It is kept vertical with the lower end fixed. A block fastened to its other end is made to undergo small oscillations. If the block makes 5 oscillations each second what is the mass of the block?

योग

उत्तर

It is given that:
Energy stored in the spring, E = 5 J
Frequency of the mass-spring system, = 5
Extension in the length of the spring, = 25 cm = 0.25 m

\[\text { Time  period },   T   = \frac{1}{5}  s\] 

\[\text { Potential  energy }\left( U \right)\text {  is  given  by, }  \] 

\[U = \frac{1}{2}k x^2 \] 

\[ \Rightarrow \frac{1}{2}k x^2  = 5\] 

\[ \Rightarrow \frac{1}{2}k \left( 0 . 25 \right)^2  = 5\] 

\[ \Rightarrow k = 160  N/m\] 

\[\text { Time  period  of  spring  mass  system  is  given  by, }\] 

\[  T = 2\pi\sqrt{\left( \frac{m}{k} \right)}\] \[ \text {where  m  is  the  mass  of  the  body  hanged,   and }\] \[\text { k  is  the  spring  constant . }\]\[\text { On  substituting  the  respective  values  in  the  above  expression,   we  get: }\]

\[      \frac{1}{5} = 2\pi\sqrt{\left( \frac{m}{160} \right)}\] 

\[ \Rightarrow m = 0 . 16  kg\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - Exercise [पृष्ठ २५३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
Exercise | Q 13 | पृष्ठ २५३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Answer in brief:

Derive an expression for the period of motion of a simple pendulum. On which factors does it depend?


A particle executes simple harmonic motion under the restoring force provided by a spring. The time period is T. If the spring is divided in two equal parts and one part is used to continue the simple harmonic motion, the time period will


A particle moves in a circular path with a uniform speed. Its motion is


A particle is fastened at the end of a string and is whirled in a vertical circle with the other end of the string being fixed. The motion of the particle is


A particle of mass m is attatched to three springs A, B and C of equal force constants kas shown in figure . If the particle is pushed slightly against the spring C and released, find the time period of oscillation.


The left block in figure moves at a speed v towards the right block placed in equilibrium. All collisions to take place are elastic and the surfaces are frictionless. Show that the motions of the two blocks are periodic. Find the time period of these periodic motions. Neglect the widths of the blocks.


Find the time period of the motion of the particle shown in figure . Neglect the small effect of the bend near the bottom.


A uniform plate of mass M stays horizontally and symmetrically on two wheels rotating in opposite direction in Figure . The separation between the wheels is L. The friction coefficient between each wheel and the plate is μ. Find the time period of oscillation of the plate if it is slightly displaced along its length and released.


The ear-ring of a lady shown in figure has a 3 cm long light suspension wire. (a) Find the time period of small oscillations if the lady is standing on the ground. (b) The lady now sits in a merry-go-round moving at 4 m/s1 in a circle of radius 2 m. Find the time period of small oscillations of the ear-ring.


A body of mass 1 kg is mafe to oscillate on a spring of force constant 16 N/m. Calculate (a) Angular frequency, (b) Frequency of vibrations.


The maximum speed of a particle executing S.H.M. is 10 m/s and maximum acceleration is 31.4 m/s2. Its periodic time is ______ 


Which of the following example represent periodic motion?

A freely suspended bar magnet displaced from its N-S direction and released.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

The rotation of the earth about its axis.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

A motion of an oscillating mercury column in a U-tube.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

The motion of a ball bearing inside a smooth curved bowl, when released from a point slightly above the lowermost point.


When two displacements represented by y1 = a sin(ωt) and y2 = b cos(ωt) are superimposed the motion is ______. 


The equation of motion of a particle is x = a cos (αt)2. The motion is ______.


A person normally weighing 50 kg stands on a massless platform which oscillates up and down harmonically at a frequency of 2.0 s–1 and an amplitude 5.0 cm. A weighing machine on the platform gives the persons weight against time.

  1. Will there be any change in weight of the body, during the oscillation?
  2. If answer to part (a) is yes, what will be the maximum and minimum reading in the machine and at which position?

When a particle executes Simple Harmonic Motion, the nature of the graph of velocity as a function of displacement will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×