हिंदी

Refer to question 13. Solve the linear programming problem and determine the maximum profit to the manufacturer - Mathematics

Advertisements
Advertisements

प्रश्न

Refer to question 13. Solve the linear programming problem and determine the maximum profit to the manufacturer

सारिणी
योग

उत्तर

As per the solution of Question No.13

We have

Let 3x + 2y = 3600

x 0 1200
y 1800 0

Let x + 4y = 1800

x 0 1800
y 450 0

Maximise Z = 100x + 170y

Subject to the constraints

3x + 2y ≤ 3600  ......(i)

x + 4y ≤ 1800  .......(ii)

x ≥ 0, y ≥ 0

On solving equation (i) and (ii) we get

x = 1080 and y = 180

OABC is the feasible region whose corner points are O(0, 0), A(1200, 0), B(1080, 180), C(0, 450).

Let us evaluate the value of Z.

Corner points Value of Z = 100x + 170y  
O(0, 0) Z = 100(0) + 170(0) = 0  
A(1200, 0) Z = 100(1200) + 0 = 120000  
B(1080, 180) Z = 100(1080) + 170(180)
= 138600
← Maximum
C(0, 450) Z = 170(450) = 76500  

Hence, the maximum value of Z is 138600 at (1080, 180).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Linear Programming - Exercise [पृष्ठ २५३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 12 Linear Programming
Exercise | Q 18 | पृष्ठ २५३

संबंधित प्रश्न

Two tailors, A and B, earn Rs 300 and Rs 400 per day respectively. A can stitch 6 shirts and 4 pairs of trousers while B can stitch 10 shirts and 4 pairs of trousers per day. To find how many days should each of them work and if it is desired to produce at least 60 shirts and 32 pairs of trousers at a minimum labour cost, formulate this as an LPP


Solve the following Linear Programming Problems graphically:

Minimise Z = x + 2y

subject to 2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Maximise Z = – x + 2y, Subject to the constraints:

x ≥ 3, x + y ≥ 5, x + 2y ≥ 6, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Maximise Z = x + y, subject to x – y ≤ –1, –x + y ≤ 0, x, y ≥ 0.


An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made on each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to travel by economy class than by the executive class. Determine how many tickets of each type must be sold in order to maximize the profit for the airline. What is the maximum profit?


If the feasible region for a linear programming problem is bounded, then the objective function Z = ax + by has both a maximum and a minimum value on R.


The minimum value of the objective function Z = ax + by in a linear programming problem always occurs at only one corner point of the feasible region


Maximise Z = 3x + 4y, subject to the constraints: x + y ≤ 1, x ≥ 0, y ≥ 0


The feasible region for a LPP is shown in Figure. Find the minimum value of Z = 11x + 7y


In figure, the feasible region (shaded) for a LPP is shown. Determine the maximum and minimum value of Z = x + 2y.


A man rides his motorcycle at the speed of 50 km/hour. He has to spend Rs 2 per km on petrol. If he rides it at a faster speed of 80 km/hour, the petrol cost increases to Rs 3 per km. He has atmost Rs 120 to spend on petrol and one hour’s time. He wishes to find the maximum distance that he can travel. Express this problem as a linear programming problem


Refer to question 15. Determine the maximum distance that the man can travel.


Maximise Z = x + y subject to x + 4y ≤ 8, 2x + 3y ≤ 12, 3x + y ≤ 9, x ≥ 0, y ≥ 0.


Refer to Question 27. Maximum of Z occurs at ______.


Refer to Question 30. Minimum value of F is ______.


In a LPP, the linear inequalities or restrictions on the variables are called ____________.


If the feasible region for a LPP is ______ then the optimal value of the objective function Z = ax + by may or may not exist.


In a LPP if the objective function Z = ax + by has the same maximum value on two corner points of the feasible region, then every point on the line segment joining these two points give the same ______ value.


Maximum value of the objective function Z = ax + by in a LPP always occurs at only one corner point of the feasible region.


In a LPP, the minimum value of the objective function Z = ax + by is always 0 if the origin is one of the corner point of the feasible region.


In the given graph, the feasible region for an LPP is shaded. The objective function Z = 2x – 3y will be minimum at:


In a linear programming problem, the constraints on the decision variables x and y are x − 3y ≥ 0, y ≥ 0, 0 ≤ x ≤ 3. The feasible region:


Objective function of a linear programming problem is ____________.


The maximum value of the object function Z = 5x + 10 y subject to the constraints x + 2y ≤ 120, x + y ≥ 60, x - 2y ≥ 0, x ≥ 0, y ≥ 0 is ____________.


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. If M and m respectively be the largest and smallest values at corner points then ____________.


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. Let M and m respectively be the largest and smallest values at corner points. In case the feasible region is unbounded, m is the minimum value of the objective function.


In a LPP, the objective function is always ____________.


Maximize Z = 10×1 + 25×2, subject to 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3, x1 + x2 ≤ 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×