हिंदी

सारणिक ∆ = |cos(x+y)-sin(x+y)cos2ysinxcosxsiny-cosxsinxcosy|, x से स्वतंत्र है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सारणिक ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|`, x से स्वतंत्र है।

विकल्प

  • सत्य

  • असत्य

MCQ
सत्य या असत्य

उत्तर

यह कथन सत्य है।

व्याख्या:

R1 → R1 + sinyR2 + cosyR3, का प्रयोग कीजिए और फिर सरल कीजिए।

shaalaa.com
सारणिक
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: सारणिक - हल किए हुए उदाहरण [पृष्ठ ७५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 4 सारणिक
हल किए हुए उदाहरण | Q 15 | पृष्ठ ७५

संबंधित प्रश्न

निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।

`abs((cos  theta, -sin  theta),(sin  theta, cos  theta))`


निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।

`abs ((x^2 - x + 1, x - 1),(x + 1, x + 1))`


यदि `A = [(1,2),(4,2)],` तो दिखाइए `abs(2 A) = 4 abs A`


यदि  `A = [(1,0,1),(0,1,2),(0,0,4)]` हो, तो दिखाइए `abs (3 A) = 27 abs A`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((2,-1,-2),(0,2,-1),(3,-5,0))`


`[(x,y,x+y),(y,x+y,x),(x+y,x,y)]` का मान ज्ञात कीजिए।


`[(1,x,y),(1,x+y,y),(1,x,x+y)]` का मान ज्ञात कीजिए।


यदि Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, दो दिखाइए कि Δ = 0 है।


एक त्रिभुज ABC में यदि `|(1, 1, 1),(1 + sin"A", 1 + sin"B", 1 + sin"C"),(sin"A" + sin^2"A", sin"B" + sin^2"B", sin"C" + sin^2"C")|` = 0, तो सिद्ध कीजिए कि ∆ABC एक समद्विबाहु त्रिभुज है।


यदि ∆ = `|("A"x, x^2, 1),("B"y, y^2, 1),("C"z, z^2, 1)|`तथा ∆1 = `|("A", "B", "C"),(x, y, z),(zy, zx, xy)|`, तब 


मान निकालिए- `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`


मान निकालिए- `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`


सिद्ध कीजिए - `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz


यदि A + B + C = 0, तो सिद्ध कीजिए कि `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0


यदि `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, तो x का मान ज्ञात कीजिए।


यदि x + y + z = 0, तो सिद्ध कीजिए कि `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`


अंतराल `pi/4  x ≤ pi/4` में सारणिक `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 के विभिन्‍न वास्तविक मूलों की संख्या है।


यदि A, B और C एक त्रिभुज के कोण हैं तो सारणिक

`|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` बराबर है।


यदि  f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, तब


यदि x, y, z में कोई भी शून्य नहीं है और `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, है तब x–1 + y–1 + z–1 बराबर है।


सारणिक `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` का मान है


यदि x, y, z ∈ R, तब सारणिक `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` बराबर है ______ ।


यदि A एक 3 × 3 कोटि का आव्यूह है तब (A2)–1 = ______.


`("aA")^-1 = 1/"a"  "A"^-1` जहाँ a एक वास्तविक संख्या है और A एक वर्ग आव्यूह है।


यदि तीन कोटि के एक सारणिक का मान 12 है तब इसके प्रत्येक अवयव को इसके सहखंड से बदलने पर प्राप्त सारणिक का मान 144 होगा।


यदि सारणिक `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` को कोटि 3 के K सारणिकों में ऐसे विघटित किया जाए कि उनके प्रत्येक अवयव में केवल एक पद हो तब K का मान 8 है।


`|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` का अधिकतम मान `1/2` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×