हिंदी

यदि सारणिक apulfybqvmgzcrwnh|x+ap+ul+fy+bq+vm+gz+cr+wn+h| को कोटि 3 के K सारणिकों में ऐसे विघटित किया जाए कि उनके प्रत्येक अवयव में केवल एक पद हो तब K का मान 8 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि सारणिक `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` को कोटि 3 के K सारणिकों में ऐसे विघटित किया जाए कि उनके प्रत्येक अवयव में केवल एक पद हो तब K का मान 8 है।

विकल्प

  • सत्य

  • असत्य

MCQ
सत्य या असत्य

उत्तर

यह कथन सत्य है। 

व्याख्या:

चलो Δ = `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|`

Cको विभाजित करना

⇒ `|(x, "p" + "u", "l" + "f"),(y, "q" + "v", "m" + "g"),(z, "r" + "w", "n" + "h")| + |("a", "p" + "u", "l" + "f"),("b", "q" + "v", "m" + "g"),("c", "r" + "w", "n" + "h")|`

दोनों निर्धारकों में C2 को विभाजित करना

⇒ `|(x, "p", "l" + "f"),(y, "q", "m" + "g"),(z, "r", "n" + "h")| + |(x, "u", "l" + "f"),(y, "v", "m" + "g"),(z, "w", "n" + "h")| + |("a", "p", "l" + "f"),("b", "q", "m" + "g"),("c", "r", "n" + "h")| + |("a", "u", "l" + "f"),("b", "v", "m" + "g"),("c", "w", "n" + "h")|`

इसी तरह प्रत्येक निर्धारक में C3 को विभाजित करके, हमें 8 निर्धारक मिलेंगे।

shaalaa.com
सारणिक
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: सारणिक - प्रश्नावली [पृष्ठ ८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 4 सारणिक
प्रश्नावली | Q 56 | पृष्ठ ८३

संबंधित प्रश्न

निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।

`abs ((2,4),(-5,-1))`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((3,-1,-2),(0,0,-1),(3,-5,0))`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((3,-4,5),(1,1,-2),(2,3,1))`


यदि `"A" = [(1,1,2),(2,1,3),(5,4,9)],` हो तो `abs "A"` ज्ञात कीजिए।


x के मान ज्ञात कीजिए यदि `abs ((2,3),(4,5)) = abs ((x, 3),(2x, 5))`


सिद्ध कीजिए कि सारणिक `[(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x)],` θ से स्वतंत्र है।


`[(1,x,y),(1,x+y,y),(1,x,x+y)]` का मान ज्ञात कीजिए।


यदि Δ = `|(1, x, x^2),(1, y, y^2),(1, z, z^2)|`, Δ1 = `|(1, 1, 1),(yz, zx, xy),(x, y, z)|`, तो सिद्ध कीजिए कि ∆ + ∆1 = 0


सिद्ध कीजिए कि (A–1)′ = (A′)–1, जहाँ A एक व्युत्क्रमणीय आव्यूह है।


यदि ∆ = `|("A"x, x^2, 1),("B"y, y^2, 1),("C"z, z^2, 1)|`तथा ∆1 = `|("A", "B", "C"),(x, y, z),(zy, zx, xy)|`, तब 


सारणिक ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______


सारणिक `|(1, 1, 1),(""^"n""C"_1, ""^("n" + 2)"C"_1, ""^("n" + 4)"C"_1),(""^"n""C"_2, ""^("n" + 2)"C"_2, ""^("n" + 4)"C"_2)|` = 8


मान निकालिए- `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`


मान निकालिए- `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`


मान निकालिए- `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`


सिद्ध कीजिए - `|("a"^2 + 2"a", 2"a" + 1, 1),(2"a" + 1, "a" + 2, 1),(3, 3, 1)| = ("a" - 1)^3`


यदि `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, तो x का मान ज्ञात कीजिए।


दर्शाइए कि त्रिभुज ABC एक समद्विबाहु त्रिभुज है यदि सारणिक

Δ = `[(1, 1, 1),(1 + cos"A", 1 + cos"B", 1 + cos"C"),(cos^2"A" + cos"A", cos^2"B" + cos"B", cos^2"C" + cos"C")]` = 0


यदि A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, तो A–1 ज्ञात कीजिए। A–1 का प्रयोग करके रैखिक समीकरणों के निकाय x – 2y = 10 , 2x – y – z = 8, –2y + z = 7 को हल कीजिए।


आव्यूह विधि से समीकरण निकाय 3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2 को हल कीजिए।


यदि A = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, B = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, तो 8 ज्ञात कीजिए और इसका प्रयोग समीकरण निकाय y + 2z = 7, x – y = 3, 2x + 3y + 4z = 17 को हल करने के लिए कौजिए।


यदि x, y, z में कोई भी शून्य नहीं है और `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, है तब x–1 + y–1 + z–1 बराबर है।


यदि A एक 3 × 3 कोटि का व्युत्क्रमणीय आव्यूह है तब |A–1 | = ______


यदि x, y, z ∈ R, तब सारणिक `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` बराबर है ______ ।


एक सारणिक A की किसी पंक्ति के अवयवों और उनके संगत सहखंडों के गुणनफल का योग ______ के बराबर होता है।


|A–1| ≠ |A|–1, जहाँ व्युत्क्रमणीय आव्यूह है।


`|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` का अधिकतम मान `1/2` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×