Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए - `|("a"^2 + 2"a", 2"a" + 1, 1),(2"a" + 1, "a" + 2, 1),(3, 3, 1)| = ("a" - 1)^3`
उत्तर
`|("a"^2 + 2"a", 2"a" + 1, 1),(2"a" + 1, "a" + 2, 1),(3, 3, 1)|`
[R1 → R1 – R2 और R2 → R2 – R3 लागू करना]
= `|("a"^2 - 1, "a" - 1, 0),(2"a" - 2, "a" - 1, 0),(3, 3, 1)|`
[R1 और R2 से सामान्य (a – 1) लेना]
`("a" - 1)^2 |("a" + 1, 1, 0),(2, 1, 0),(3, 3, 1)|`
[R3 के साथ विस्तार]
= `("a" - 1)^2 [1 * ("a" + 1) - 2]`
= (a – 1)3
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।
`abs ((2,4),(-5,-1))`
निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।
`abs ((x^2 - x + 1, x - 1),(x + 1, x + 1))`
निम्नलिखित सारणिक के मान ज्ञात कीजिए।
`abs ((2,-1,-2),(0,2,-1),(3,-5,0))`
x के मान ज्ञात कीजिए यदि `abs ((2,3),(4,5)) = abs ((x, 3),(2x, 5))`
यदि `abs ((x, 2),(18, x)) = abs ((6,2),(18,6))` हो तो x बराबर है:
सिद्ध कीजिए कि सारणिक `[(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x)],` θ से स्वतंत्र है।
यदि A = `[(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)]`, जहाँ 0 ≤ θ ≤ 2π हो तो ______.
बिना प्रसरण किए, दिखाइए कि Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0
सिद्ध कीजिए कि (A–1)′ = (A′)–1, जहाँ A एक व्युत्क्रमणीय आव्यूह है।
सारणिक ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|`, x से स्वतंत्र है।
यदि A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, तब A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
यदि A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` तब x = 1, y = – 1
मान निकालिए- `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`
मान निकालिए- `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`
मान निकालिए- `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`
यदि `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, तो x का मान ज्ञात कीजिए।
दर्शाइए कि a के किसी भी मान के लिए बिंदु (a + 5, a – 4), (a – 2, a + 3) और (a, a) एक सरल रेखा में नहीं है।
दर्शाइए कि त्रिभुज ABC एक समद्विबाहु त्रिभुज है यदि सारणिक
Δ = `[(1, 1, 1),(1 + cos"A", 1 + cos"B", 1 + cos"C"),(cos^2"A" + cos"A", cos^2"B" + cos"B", cos^2"C" + cos"C")]` = 0
यदि A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` तो A–1 ज्ञात कीजिए और दर्शाइए कि A–1 = `("A"^2 - 3"I")/2`.
यदि A = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, B = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, तो 8 ज्ञात कीजिए और इसका प्रयोग समीकरण निकाय y + 2z = 7, x – y = 3, 2x + 3y + 4z = 17 को हल करने के लिए कौजिए।
सारणिक `|("a" - "b", "b" + "c", "a"),("b" - "a", "c" + "a", "b"),("c" - "a", "a" + "b", "c")|` का मान है
सारणिक `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` का मान है
यदि f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., है तब A = ______
|A–1| ≠ |A|–1, जहाँ व्युत्क्रमणीय आव्यूह है।
सारणिक `|(sin"A", cos"A", sin"A" + cos"B"),(sin"B", cos"A", sin"B" + cos"B"),(sin"C", cos"A", sin"C" + cos"B")|` = 0