हिंदी

बिना प्रसरण किए, दिखाइए कि Δ = coseccosec|cosec2θcot2θ1cot2θcosec2θ-142402| = 0 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

बिना प्रसरण किए, दिखाइए कि Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0

योग

उत्तर

C1 → C1 – C2 – C3, का प्रयोग करने पर हम पाते हैं कि

Δ = `|("cosec"^2theta - cot^2theta - 1, cot^2theta, 1),(cot^2theta - "cosec"^2theta + 1, "cosec"^2theta, -1),(0, 40, 2)|`

= `|(0, cot^2theta, 1),(0, "cosec"^2theta, -1),(0, 40, 2)|`

= 0

shaalaa.com
सारणिक
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: सारणिक - हल किए हुए उदाहरण [पृष्ठ ६९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 4 सारणिक
हल किए हुए उदाहरण | Q 3 | पृष्ठ ६९

संबंधित प्रश्न

यदि  `A = [(1,0,1),(0,1,2),(0,0,4)]` हो, तो दिखाइए `abs (3 A) = 27 abs A`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((3,-1,-2),(0,0,-1),(3,-5,0))`


x के मान ज्ञात कीजिए यदि `abs ((2,4),(5,1)) = abs ((2x, 4),(6, x))`


x के मान ज्ञात कीजिए यदि `abs ((2,3),(4,5)) = abs ((x, 3),(2x, 5))`


सिद्ध कीजिए कि सारणिक `[(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x)],` θ से स्वतंत्र है।


यदि Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, दो दिखाइए कि Δ = 0 है।


यदि ∆ = `|("A"x, x^2, 1),("B"y, y^2, 1),("C"z, z^2, 1)|`तथा ∆1 = `|("A", "B", "C"),(x, y, z),(zy, zx, xy)|`, तब 


यदि x, y ∈ R, तब सारणिक ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` किस अंतराल में है।


सारणिक ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` ______


सारणिक ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______


यदि A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` तब x = 1, y = – 1


मान निकालिए- `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`


मान निकालिए- `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`


सिद्ध कीजिए - `|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` = 0


यदि एक समबाहु त्रिभुज के शीर्ष (x1, y1), (x2, y2), (x3, y3) तथा त्रिभुज की भुजाओं की लंबाई ‘a’ है तो सिद्ध कीजिए कि `|(x_1, y_1, 1),(x_2, y_2, 1),(x_3, y_3, 1)|^2 = (3"a"^4)/4`


आव्यूह विधि से समीकरण निकाय 3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2 को हल कीजिए।


एक त्रिभुज का क्षेत्रफल 9 वर्ग इकाई है जिसके शीर्ष (-3, 0), (3, 0) और (0, k) हैं तो k का मान होगा।


सारणिक `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` बराबर है।


यदि A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]` तब A–1 का अस्तित्व है यदि


सारणिक `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` का मान है


यदि cos2θ = 0, तब `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2` = ______.


यदि A एक 3 × 3 कोटि का आव्यूह है तब A के सारणिक के सभी उप-सारणिकों की संख्या ______ है।


यदि समीकरण |`|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0 का एक मूल x = – 9 है तब इसके अन्य दो मूल ______ हैं।


यदि f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., है तब A = ______


(A3)–1 = (A–1)3, जहाँ A एक वर्ग आव्यूह है और |A| ≠ 0 है।


`|(x + 1, x + 2, x + "a"),(x + 2, x + 3, x + "b"),(x + 3, x + 4, x + "c")|` = 0, जहाँ a, b, c, A.P में है।


adj. A| = |A|2, जहाँ A एक कोटि 2 का वर्ग आव्यूह है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×