हिंदी

सिद्ध कीजिए - |y2z2yzy+zz2x2zxz+xx2y2xyx+y| = 0 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सिद्ध कीजिए - `|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` = 0

योग

उत्तर

`|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` 

[R1, R2, R3 को क्रमशः x, y, z से गुणा करने पर]

= `1/(xyz) |(xy^2z^2, xyz, xy + xz),(x^2yz^2, xyz, yz + xy),(x^2y^2z, xyz, xz + yz)|`

[C1 और C2 से सामान्य (xyz) लेना]

= `1/(xyz) (xyz)^2 |(yz, 1, xy + xz),(xz, 1, yz + xy),(xy, 1, xz + yz)|`

[C3 → C3 + C1 लागू करना]

= `xyz|(yz, 1, xy + yz + zx),(xz, 1, xy + yz + zx),(xy, 1, xy + yz + zx)|`

[C3 से उभयनिष्ठ (xy + yz + zx) लेना]

= ` xyz(xy + yz + zx) |(yz, 1, 1),(xz, 1, 1),(xy, 1, 1)|`

= 0 ....[∵ C2 और C3 समान हैं]

shaalaa.com
सारणिक
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: सारणिक - प्रश्नावली [पृष्ठ ७६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 4 सारणिक
प्रश्नावली | Q 7 | पृष्ठ ७६

संबंधित प्रश्न

निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।

`abs ((2,4),(-5,-1))`


यदि `A = [(1,2),(4,2)],` तो दिखाइए `abs(2 A) = 4 abs A`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((3,-1,-2),(0,0,-1),(3,-5,0))`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((0,1,2),(-1,0,-3),(-2,3,0))`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((2,-1,-2),(0,2,-1),(3,-5,0))`


यदि Δ = `|(1, x, x^2),(1, y, y^2),(1, z, z^2)|`, Δ1 = `|(1, 1, 1),(yz, zx, xy),(x, y, z)|`, तो सिद्ध कीजिए कि ∆ + ∆1 = 0


दर्शाइए कि Δ = `|(x, "p", "q"),("p", x, "q"),("q", "q", x)| = (x - "p")(x^2 + "p"x - 2"q"^2)` 


यदि Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, का एक मूल x = – 4 हो तो अन्य दो मूलों को ज्ञात कीजिए।


सारणिक ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` ______


यदि A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, तब A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


यदि A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` तब x = 1, y = – 1


मान निकालिए- `|(x^2 - x + 1, x - 1),(x + 1, x + 1)|`


मान निकालिए- `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`


मान निकालिए- `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`


मान निकालिए- `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`


यदि A + B + C = 0, तो सिद्ध कीजिए कि `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0


यदि A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, तो A–1 ज्ञात कीजिए। A–1 का प्रयोग करके रैखिक समीकरणों के निकाय x – 2y = 10 , 2x – y – z = 8, –2y + z = 7 को हल कीजिए।


यदि x + y + z = 0, तो सिद्ध कीजिए कि `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`


यदि /f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, तब `lim_("t" - 0) ("f"("t"))/"t"^2`  बराबर है।


यदि A और B व्युत्क्रमणीय आव्यूह हैं तब निम्न में से कौन सा सत्य नहीं है?


यदि A एक 3 × 3 कोटि का आव्यूह है तो |3A| = ______ 


यदि f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., है तब A = ______


(A3)–1 = (A–1)3, जहाँ A एक वर्ग आव्यूह है और |A| ≠ 0 है।


`("aA")^-1 = 1/"a"  "A"^-1` जहाँ a एक वास्तविक संख्या है और A एक वर्ग आव्यूह है।


|A–1| ≠ |A|–1, जहाँ व्युत्क्रमणीय आव्यूह है।


यदि A और B कोटि 3 के आव्यूह हैं और |A| = 5, |B| = 3, तब |3AB| = 27 × 5 × 3 = 405.


`|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` का अधिकतम मान `1/2` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×