हिंदी

दर्शाइए कि Δ = pqpqqqppq|xpqpxqqqx|=(x-p)(x2+px-2q2) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दर्शाइए कि Δ = `|(x, "p", "q"),("p", x, "q"),("q", "q", x)| = (x - "p")(x^2 + "p"x - 2"q"^2)` 

योग

उत्तर

C1 → C1 – C2, का प्रयोग करने पर हम पाते हैं कि

Δ = `|(x - "p", "p", "q"),("p" - x, x, "q"),(0, "q", x)|`

= `(x - "p")|(1, "p", "q"),(-1, x, "q"),(0, "q", x)|`

= `(x - "p")|(0, "p" + x, 2"p"),(-1, x, "q"),(0, "q", x)|` R1 → R1 – R2 का प्रयोग करने पर

C1, के अनुदिश प्रसरण करने पर हम पाते हैं कि

Δ = `(x - "p")("p"x + x^2 - 2"q"^2)`

= `(x - "p")(x^2 + "p"x - 2"q"^2)` 

shaalaa.com
सारणिक
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: सारणिक - हल किए हुए उदाहरण [पृष्ठ ६९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 4 सारणिक
हल किए हुए उदाहरण | Q 4 | पृष्ठ ६९

संबंधित प्रश्न

निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।

`abs ((x^2 - x + 1, x - 1),(x + 1, x + 1))`


यदि `A = [(1,2),(4,2)],` तो दिखाइए `abs(2 A) = 4 abs A`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((3,-1,-2),(0,0,-1),(3,-5,0))`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((3,-4,5),(1,1,-2),(2,3,1))`


x के मान ज्ञात कीजिए यदि `abs ((2,3),(4,5)) = abs ((x, 3),(2x, 5))`


सिद्ध कीजिए कि सारणिक `[(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x)],` θ से स्वतंत्र है।


यदि a ≠ 0 हो तो समीकरण `[(x+a, x, x),(x, x + a, x),(x,x,x+a)] = 0` को हल कीजिए |


यदि A = `[(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)]`, जहाँ 0 ≤ θ ≤ 2π हो तो ______.


`[(x,y,x+y),(y,x+y,x),(x+y,x,y)]` का मान ज्ञात कीजिए।


बिना प्रसरण किए, दिखाइए कि Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0


यदि x, y ∈ R, तब सारणिक ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` किस अंतराल में है।


यदि A, B, C एक त्रिभुज के कोण हैं तब ∆ = `|(sin^2"A", cot"A", 1),(sin^2"B", cot"B", 1),(sin^2"C", cot"C", 1)|` = ______


सारणिक ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` ______


सारणिक ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______


मान निकालिए- `|(x^2 - x + 1, x - 1),(x + 1, x + 1)|`


मान निकालिए- `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`


यदि a1, a2, a3, ..., ar G.P में हैं तो सिद्ध कौजिए कि सारणिक `|("a"_("r" + 1), "a"_("r" + 5), "a"_("r" + 9)),("a"_("r" + 7), "a"_("r" + 11), "a"_("r" + 15)),("a"_("r" + 11), "a"_("r" + 17), "a"_("r" + 21))|` r से स्वतंत्र है।


दर्शाइए कि a के किसी भी मान के लिए बिंदु (a + 5, a – 4), (a – 2, a + 3) और (a, a) एक सरल रेखा में नहीं है।


यदि A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` तो A–1  ज्ञात कीजिए और दर्शाइए कि A–1 = `("A"^2 - 3"I")/2`.


सिद्ध कीजिए कि `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|`, a + b + c से विभाजित होता है। इसका भागफल भी ज्ञात कीजिए।


यदि `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, तब x का मान है


सारणिक `|("a" - "b", "b" + "c", "a"),("b" - "a", "c" + "a", "b"),("c" - "a", "a" + "b", "c")|` का मान है


अंतराल `pi/4  x ≤ pi/4` में सारणिक `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 के विभिन्‍न वास्तविक मूलों की संख्या है।


यदि /f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, तब `lim_("t" - 0) ("f"("t"))/"t"^2`  बराबर है।


यदि θ एक वास्तविक संख्या है तब Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` का अधिकतम मान है।


यदि Δ = `|("a", "p", x),("b", "q", y),("c", "r", z)|` = 16, है तब Δ1 = `|("p" + x, "a" + x, "a" + "p"),("q" + y, "b" + y, "b" + "q"),("r" + z, "c" + z, "c" + "r")|` = 32 होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×