हिंदी

यदि A = [1sinθ1-sinθ1sinθ-1-sinθ1], जहाँ 0 ≤ θ ≤ 2π हो तो ______. - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि A = `[(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)]`, जहाँ 0 ≤ θ ≤ 2π हो तो ______.

विकल्प

  • det (A) = 0

  • det (A) ∈ (2, ∞)

  • det (A) ∈ (2, 4)

  • det (A) ∈ [2, 4]

MCQ
रिक्त स्थान भरें

उत्तर

यदि A = `[(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)]`, जहाँ 0 ≤ θ ≤ 2π हो तो det (A) ∈ [2, 4].

स्पष्टीकरण:

माना A = `[(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)]`

∴ |A| =  `[(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)]`

= 1[1 + sin2θ] - sinθ[-sinθ + sinθ] + 1[sin2θ + 1]

= `1 + sin^2theta + sin^2theta + 1`

= `2 + 2sin^2theta = 2(1 + sin^2theta)`

जब θ = 0, π, 2π तो sinθ = 0

⇒ |A| = 2

जब `theta = pi/2, (3pi)/2` तो sin2θ = 1,

|A| = 2(1 + 1) = 2 × 2 = 4

∴ det A ∈ [2, 4]

अतः विकल्प det (A) ∈ [2, 4] सही है।

shaalaa.com
सारणिक
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: सारणिक - अध्याय 4 पर विविध प्रश्नावली [पृष्ठ १५६]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 4 सारणिक
अध्याय 4 पर विविध प्रश्नावली | Q 19. | पृष्ठ १५६

संबंधित प्रश्न

निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।

`abs ((2,4),(-5,-1))`


निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।

`abs ((x^2 - x + 1, x - 1),(x + 1, x + 1))`


यदि `A = [(1,2),(4,2)],` तो दिखाइए `abs(2 A) = 4 abs A`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((3,-4,5),(1,1,-2),(2,3,1))`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((0,1,2),(-1,0,-3),(-2,3,0))`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((2,-1,-2),(0,2,-1),(3,-5,0))`


यदि `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, तो x ज्ञात कीजिए।


यदि Δ = `|(1, x, x^2),(1, y, y^2),(1, z, z^2)|`, Δ1 = `|(1, 1, 1),(yz, zx, xy),(x, y, z)|`, तो सिद्ध कीजिए कि ∆ + ∆1 = 0


सिद्ध कीजिए कि (A–1)′ = (A′)–1, जहाँ A एक व्युत्क्रमणीय आव्यूह है।


यदि Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, का एक मूल x = – 4 हो तो अन्य दो मूलों को ज्ञात कीजिए।


दिखाइए कि यदि सारणिक ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0 है तब sinθ = 0 या `1/2` होगा।


यदि A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` तब x = 1, y = – 1


मान निकालिए- `|(x^2 - x + 1, x - 1),(x + 1, x + 1)|`


मान निकालिए- `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`


सिद्ध कीजिए - `|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` = 0


यदि A + B + C = 0, तो सिद्ध कीजिए कि `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0


θ का वह मान ज्ञात कीजिए जो `[(1, 1, sin3theta),(-4, 3, cos2theta),(7, -7, -2)]` = 0 को संतुष्ट करता हो।


यदि `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, तो x का मान ज्ञात कीजिए।


आव्यूह विधि से समीकरण निकाय 3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2 को हल कीजिए।


सारणिक `|("a" - "b", "b" + "c", "a"),("b" - "a", "c" + "a", "b"),("c" - "a", "a" + "b", "c")|` का मान है


यदि /f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, तब `lim_("t" - 0) ("f"("t"))/"t"^2`  बराबर है।


सारणिक `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` का मान है


यदि A एक 3 × 3 कोटि का आव्यूह है तब A के सारणिक के सभी उप-सारणिकों की संख्या ______ है।


`|(0, xyz, x - z),(y - x, 0, y  z),(z - x, z - y, 0)|` = ______.


यदि A और B कोटि 3 के आव्यूह हैं और |A| = 5, |B| = 3, तब |3AB| = 27 × 5 × 3 = 405.


`|(x + 1, x + 2, x + "a"),(x + 2, x + 3, x + "b"),(x + 3, x + 4, x + "c")|` = 0, जहाँ a, b, c, A.P में है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×