हिंदी

दिखाइए कि यदि सारणिक ∆ = |3-2sin3θ-78cos2θ-11142| = 0 है तब sinθ = 0 या 12 होगा। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दिखाइए कि यदि सारणिक ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0 है तब sinθ = 0 या `1/2` होगा।

योग

उत्तर

R2 → R2 + 4R1 और R3 → R3 + 7R1, के प्रयोग से हम पाते हैं कि

`|(3, -2, sin3theta),(5, 0, cos2theta + 4sin3theta = 0),(10, 0, 2 + 7sin3theta)|` = 0

या 2 [5(2 + 7 sin3θ) – 10(cos2θ + 4sin3θ)] = 0

या 2 + 7sin3θ – 2cos2θ – 8sin3θ = 0

या 2 – 2cos2θ – sin3θ = 0

sinθ (4sin2θ + 4sinθ – 3) = 0

या sinθ = 0 या (2sinθ – 1) = 0 या (2sinθ + 3) = 0

या sinθ = 0 या sinθ = `1/2` .....(क्यों?).

shaalaa.com
सारणिक
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: सारणिक - हल किए हुए उदाहरण [पृष्ठ ७२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 4 सारणिक
हल किए हुए उदाहरण | Q 9 | पृष्ठ ७२

संबंधित प्रश्न

निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।

`abs((cos  theta, -sin  theta),(sin  theta, cos  theta))`


यदि  `A = [(1,0,1),(0,1,2),(0,0,4)]` हो, तो दिखाइए `abs (3 A) = 27 abs A`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((3,-1,-2),(0,0,-1),(3,-5,0))`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((3,-4,5),(1,1,-2),(2,3,1))`


`[(cosalphacosbeta, cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalpha cosbeta,sinalphasinbeta,cosalpha)]` का मान ज्ञात कीजिए |


यदि A = `[(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)]`, जहाँ 0 ≤ θ ≤ 2π हो तो ______.


`[(1,x,y),(1,x+y,y),(1,x,x+y)]` का मान ज्ञात कीजिए।


यदि Δ = `|(1, x, x^2),(1, y, y^2),(1, z, z^2)|`, Δ1 = `|(1, 1, 1),(yz, zx, xy),(x, y, z)|`, तो सिद्ध कीजिए कि ∆ + ∆1 = 0


यदि x, y ∈ R, तब सारणिक ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` किस अंतराल में है।


सारणिक ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` ______


यदि A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, तब A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


मान निकालिए- `|(x^2 - x + 1, x - 1),(x + 1, x + 1)|`


मान निकालिए- `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`


मान निकालिए- `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`


मान निकालिए- `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`


सिद्ध कीजिए - `|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` = 0


सिद्ध कीजिए - `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz


यदि `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, तो x का मान ज्ञात कीजिए।


दर्शाइए कि a के किसी भी मान के लिए बिंदु (a + 5, a – 4), (a – 2, a + 3) और (a, a) एक सरल रेखा में नहीं है।


यदि A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, तो A–1 ज्ञात कीजिए। A–1 का प्रयोग करके रैखिक समीकरणों के निकाय x – 2y = 10 , 2x – y – z = 8, –2y + z = 7 को हल कीजिए।


सिद्ध कीजिए कि `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|`, a + b + c से विभाजित होता है। इसका भागफल भी ज्ञात कीजिए।


यदि /f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, तब `lim_("t" - 0) ("f"("t"))/"t"^2`  बराबर है।


यदि θ एक वास्तविक संख्या है तब Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` का अधिकतम मान है।


यदि A एक 3 × 3 कोटि का व्युत्क्रमणीय आव्यूह है तब |A–1 | = ______


यदि A एक 3 × 3 कोटि का आव्यूह है तब (A2)–1 = ______.


यदि समीकरण |`|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0 का एक मूल x = – 9 है तब इसके अन्य दो मूल ______ हैं।


यदि A और B कोटि 3 के आव्यूह हैं और |A| = 5, |B| = 3, तब |3AB| = 27 × 5 × 3 = 405.


`|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` का अधिकतम मान `1/2` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×