हिंदी

यदि A = [120-2-1-20-11], तो A–1 ज्ञात कीजिए। A–1 का प्रयोग करके रैखिक समीकरणों के निकाय x – 2y = 10 , 2x – y – z = 8, –2y + z = 7 को हल कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, तो A–1 ज्ञात कीजिए। A–1 का प्रयोग करके रैखिक समीकरणों के निकाय x – 2y = 10 , 2x – y – z = 8, –2y + z = 7 को हल कीजिए।

योग

उत्तर

हमारे पास, A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`

सह-कारक हैं:

A11 = –3

A12 = 2

 A13 = 2

A31 = –4

A32 = 2

A33 = 3

∴ adjA = `[(-3, 2, 2),(-2, 1, 1),(-4, 2, 3)]^"T"`

= `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`

|A| = 1(–3) – 2(–2) + 0 = 1

∴ `"A"^-1 ("adj A")/|"A"| = [(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`

अब रैखिक समीकरणों का निकाय है

x – 2 = 10

2x– y – z = 8

और –2y + z = 7

या AX = B

अर्थात, `[(1, -2, 0),(2, -1, -1),(0, -2, 1)][(x),(y),(z)] = [(10),(8),(7)]`

जहाँ, A = `[(1, -2, 0),(2, -1, -1),(0, -2, 1)]`

X = `[(x),(y),(z)]` और B + `[(10),(8),(7)]`

∴ X = `"A"^-1"B"`

⇒ `[(x),(y),(z)] = [(-3, 2, 2),(-2, 1, 1),(-4, 2, 3)] [(10),(8),(7)]`

= `[(-30 + 16 + 14),(-20 +8 + 7),(-40 + 16 + 21)]`

= `[(0),(-5),(-3)]`

∴ x = 0, y = –5 और  = –3

shaalaa.com
सारणिक
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: सारणिक - प्रश्नावली [पृष्ठ ७८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 4 सारणिक
प्रश्नावली | Q 18 | पृष्ठ ७८

संबंधित प्रश्न

यदि `"A" = [(1,1,2),(2,1,3),(5,4,9)],` हो तो `abs "A"` ज्ञात कीजिए।


x के मान ज्ञात कीजिए यदि `abs ((2,4),(5,1)) = abs ((2x, 4),(6, x))`


x के मान ज्ञात कीजिए यदि `abs ((2,3),(4,5)) = abs ((x, 3),(2x, 5))`


यदि `abs ((x, 2),(18, x)) = abs ((6,2),(18,6))` हो तो x बराबर है:


सारणिक का प्रसरण किए बिना सिद्ध कीजिए कि `[(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)] = [(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)]`


`[(cosalphacosbeta, cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalpha cosbeta,sinalphasinbeta,cosalpha)]` का मान ज्ञात कीजिए |


`[(x,y,x+y),(y,x+y,x),(x+y,x,y)]` का मान ज्ञात कीजिए।


यदि Δ = `|(1, x, x^2),(1, y, y^2),(1, z, z^2)|`, Δ1 = `|(1, 1, 1),(yz, zx, xy),(x, y, z)|`, तो सिद्ध कीजिए कि ∆ + ∆1 = 0


मान निकालिए- `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`


मान निकालिए- `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`


सिद्ध कीजिए - `|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` = 0


सिद्ध कीजिए - `|("a"^2 + 2"a", 2"a" + 1, 1),(2"a" + 1, "a" + 2, 1),(3, 3, 1)| = ("a" - 1)^3`


यदि A + B + C = 0, तो सिद्ध कीजिए कि `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0


यदि x + y + z = 0, तो सिद्ध कीजिए कि `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`


यदि A, B और C एक त्रिभुज के कोण हैं तो सारणिक

`|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` बराबर है।


यदि /f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, तब `lim_("t" - 0) ("f"("t"))/"t"^2`  बराबर है।


यदि x, y, z में कोई भी शून्य नहीं है और `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, है तब x–1 + y–1 + z–1 बराबर है।


यदि A एक 3 × 3 कोटि का आव्यूह है तो |3A| = ______ 


(A3)–1 = (A–1)3, जहाँ A एक वर्ग आव्यूह है और |A| ≠ 0 है।


|A–1| ≠ |A|–1, जहाँ व्युत्क्रमणीय आव्यूह है।


यदि A और B कोटि 3 के आव्यूह हैं और |A| = 5, |B| = 3, तब |3AB| = 27 × 5 × 3 = 405.


`|(x + 1, x + 2, x + "a"),(x + 2, x + 3, x + "b"),(x + 3, x + 4, x + "c")|` = 0, जहाँ a, b, c, A.P में है।


adj. A| = |A|2, जहाँ A एक कोटि 2 का वर्ग आव्यूह है।


यदि Δ = `|("a", "p", x),("b", "q", y),("c", "r", z)|` = 16, है तब Δ1 = `|("p" + x, "a" + x, "a" + "p"),("q" + y, "b" + y, "b" + "q"),("r" + z, "c" + z, "c" + "r")|` = 32 होगा।


`|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` का अधिकतम मान `1/2` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×