Advertisements
Advertisements
प्रश्न
यदि Δ = `|(1, x, x^2),(1, y, y^2),(1, z, z^2)|`, Δ1 = `|(1, 1, 1),(yz, zx, xy),(x, y, z)|`, तो सिद्ध कीजिए कि ∆ + ∆1 = 0
उत्तर
हमें दिया है Δ1 = `|(1, 1, 1),(yz, zx, xy),(x, y, z)|`
पंक्तियों और स्तंभों का परस्पर परिवर्तन करने पर हमें प्राप्त होता है
Δ1 = `|(1, yz, x),(1, z, y),(1, xy, z)|`
= `1/(xyz) |(x, xyz, x^2),(y, xyz, y^2),(z, xyz, z^2)|`
= `(xyz)/(xyz) |(x, 1, x^2),(y, 1, y^2),(z, 1, z^2)|`
C1 और C2 का परस्पर परिवर्तन करने पर
= `(-1)|(1, x, x^2),(1, y, y^2),(1, z, z^2)|`
= – Δ
⇒ Δ1 + Δ = 0
APPEARS IN
संबंधित प्रश्न
निम्नलिखित सारणिक के मान ज्ञात कीजिए।
`abs ((3,-4,5),(1,1,-2),(2,3,1))`
निम्नलिखित सारणिक के मान ज्ञात कीजिए।
`abs ((0,1,2),(-1,0,-3),(-2,3,0))`
निम्नलिखित सारणिक के मान ज्ञात कीजिए।
`abs ((2,-1,-2),(0,2,-1),(3,-5,0))`
सिद्ध कीजिए कि सारणिक `[(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x)],` θ से स्वतंत्र है।
सारणिक का प्रसरण किए बिना सिद्ध कीजिए कि `[(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)] = [(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)]`
यदि A = `[(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)]`, जहाँ 0 ≤ θ ≤ 2π हो तो ______.
`[(x,y,x+y),(y,x+y,x),(x+y,x,y)]` का मान ज्ञात कीजिए।
एक त्रिभुज ABC में यदि `|(1, 1, 1),(1 + sin"A", 1 + sin"B", 1 + sin"C"),(sin"A" + sin^2"A", sin"B" + sin^2"B", sin"C" + sin^2"C")|` = 0, तो सिद्ध कीजिए कि ∆ABC एक समद्विबाहु त्रिभुज है।
सारणिक ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______
सारणिक ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|`, x से स्वतंत्र है।
मान निकालिए- `|(x^2 - x + 1, x - 1),(x + 1, x + 1)|`
मान निकालिए- `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`
मान निकालिए- `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`
सिद्ध कीजिए - `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz
यदि A + B + C = 0, तो सिद्ध कीजिए कि `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0
दर्शाइए कि a के किसी भी मान के लिए बिंदु (a + 5, a – 4), (a – 2, a + 3) और (a, a) एक सरल रेखा में नहीं है।
यदि A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, तो A–1 ज्ञात कीजिए। A–1 का प्रयोग करके रैखिक समीकरणों के निकाय x – 2y = 10 , 2x – y – z = 8, –2y + z = 7 को हल कीजिए।
यदि a + b + c ≠ 0 और `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` = 0, तो सिद्ध कीजिए कि a = b = c
यदि x + y + z = 0, तो सिद्ध कीजिए कि `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`
सारणिक `|("a" - "b", "b" + "c", "a"),("b" - "a", "c" + "a", "b"),("c" - "a", "a" + "b", "c")|` का मान है
एक त्रिभुज का क्षेत्रफल 9 वर्ग इकाई है जिसके शीर्ष (-3, 0), (3, 0) और (0, k) हैं तो k का मान होगा।
अंतराल `pi/4 x ≤ pi/4` में सारणिक `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 के विभिन्न वास्तविक मूलों की संख्या है।
यदि A एक 3 × 3 कोटि का व्युत्क्रमणीय आव्यूह है तब |A–1 | = ______
`|(0, xyz, x - z),(y - x, 0, y z),(z - x, z - y, 0)|` = ______.
यदि तीन कोटि के एक सारणिक का मान 12 है तब इसके प्रत्येक अवयव को इसके सहखंड से बदलने पर प्राप्त सारणिक का मान 144 होगा।
adj. A| = |A|2, जहाँ A एक कोटि 2 का वर्ग आव्यूह है।
सारणिक `|(sin"A", cos"A", sin"A" + cos"B"),(sin"B", cos"A", sin"B" + cos"B"),(sin"C", cos"A", sin"C" + cos"B")|` = 0