हिंदी

मान निकालिए- |3x-x+y-x+zx-y3yz-yx-zy-z3z| - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

मान निकालिए- `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`

योग

उत्तर

हमें दिया है, `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`

[C1 → C1 + C2 + C3]

= `|(x + y + z, -x + y, -x + z),(x + y + z, 3y, z - y),(x + y + z, y - z, 3z)|` का प्रयोग करने पर

[स्तंभ C1 से (x + y + z) उभयनिष्ठ लेना]

= `(x + y + z)|(1, -x + y, -x + z),(1, 3y, z - y),(1, y - z, 3z)|`

[R1 → R2 – R1 और R3 → R3 – R1 का प्रयोग करने पर]

= `(x + y + z)|(1, -x + y, -x + z),(0, 2y + x, x - y),(0, x - z, 2z + x)|`

[C2 → C2 – C3 का प्रयोग करने पर]

= `(x + y + z)|(1, -x + y, -x + z),(0, 3y, x - y),(0, -3z, 2z + x)|`

[पहले स्तंभ के साथ विस्तार करना]

= `(x + y + z) * 1[3y(2z + x) + (3z)(x - y)]`

= (x + y + z)(3yz + 3yx + 3xz)

= 3(x + y + z)(xy + yz + zx)

shaalaa.com
सारणिक
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: सारणिक - प्रश्नावली [पृष्ठ ७६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 4 सारणिक
प्रश्नावली | Q 4 | पृष्ठ ७६

संबंधित प्रश्न

सिद्ध कीजिए कि सारणिक `[(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x)],` θ से स्वतंत्र है।


सारणिक का प्रसरण किए बिना सिद्ध कीजिए कि `[(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)] = [(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)]`


यदि a ≠ 0 हो तो समीकरण `[(x+a, x, x),(x, x + a, x),(x,x,x+a)] = 0` को हल कीजिए |


यदि A = `[(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)]`, जहाँ 0 ≤ θ ≤ 2π हो तो ______.


यदि `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, तो x ज्ञात कीजिए।


यदि Δ = `|(1, x, x^2),(1, y, y^2),(1, z, z^2)|`, Δ1 = `|(1, 1, 1),(yz, zx, xy),(x, y, z)|`, तो सिद्ध कीजिए कि ∆ + ∆1 = 0


यदि Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, का एक मूल x = – 4 हो तो अन्य दो मूलों को ज्ञात कीजिए।


यदि A, B, C एक त्रिभुज के कोण हैं तब ∆ = `|(sin^2"A", cot"A", 1),(sin^2"B", cot"B", 1),(sin^2"C", cot"C", 1)|` = ______


सारणिक ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______


मान निकालिए- `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`


सिद्ध कीजिए - `|("a"^2 + 2"a", 2"a" + 1, 1),(2"a" + 1, "a" + 2, 1),(3, 3, 1)| = ("a" - 1)^3`


यदि A + B + C = 0, तो सिद्ध कीजिए कि `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0


यदि एक समबाहु त्रिभुज के शीर्ष (x1, y1), (x2, y2), (x3, y3) तथा त्रिभुज की भुजाओं की लंबाई ‘a’ है तो सिद्ध कीजिए कि `|(x_1, y_1, 1),(x_2, y_2, 1),(x_3, y_3, 1)|^2 = (3"a"^4)/4`


आव्यूह विधि से समीकरण निकाय 3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2 को हल कीजिए।


यदि a + b + c ≠ 0 और `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` = 0, तो सिद्ध कीजिए कि a = b = c


यदि x + y + z = 0, तो सिद्ध कीजिए कि `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`


यदि `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, तब x का मान है


सारणिक `|("a" - "b", "b" + "c", "a"),("b" - "a", "c" + "a", "b"),("c" - "a", "a" + "b", "c")|` का मान है


सारणिक `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` बराबर है।


यदि θ एक वास्तविक संख्या है तब Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` का अधिकतम मान है।


यदि A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]` तब A–1 का अस्तित्व है यदि


सारणिक `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` का मान है


'a' के ऐसे दो मान हैं जिनके लिए ∆ = `|(1, -2, 5),(2, "a", -1),(0, 4, 2"a")|` = 86, है तो इन दो संख्याओं का योग है।


यदि A एक 3 × 3 कोटि का आव्यूह है तो |3A| = ______ 


यदि cos2θ = 0, तब `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2` = ______.


यदि A एक 3 × 3 कोटि का आव्यूह है तब A के सारणिक के सभी उप-सारणिकों की संख्या ______ है।


यदि तीन कोटि के एक सारणिक का मान 12 है तब इसके प्रत्येक अवयव को इसके सहखंड से बदलने पर प्राप्त सारणिक का मान 144 होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×