हिंदी

सारणिक babbcbcacabaabbabbcaccaaba|b2-abb-cbc-acab-a2a-bb2-abbc-acc-aab-a2| बराबर है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सारणिक `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` बराबर है।

विकल्प

  • abc (b–c) (c – a) (a – b)

  • (b–c) (c – a) (a – b)

  • (a + b + c) (b – c) (c – a) (a – b)

  • इनमें से कोई नहीं।

MCQ

उत्तर

सही उत्तर इनमें से कोई नहीं है।

व्याख्या:

हमारे पास है, `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` 

= `|("b"("b" - "a"), "b" - "c", "c"("b" - "a")),("a"("b" - "a"), "a" - "b", "b"("b" - "a")),("c"("b" - "a"), "c" - "a", "a"("b" - "a"))|`

[C1 और C3 प्रत्येक में से (b – a) सामान्य लेते हुए]

= `("b" - "a")^2 |("b", "b" - "c", "c"),("a", "a" - "b", "b"),("c", "c" - "a", "a")|`

[C2 → C2 + C3 लागू करना]

= `("b" - "a")^2 |("b", "b", "c"),("a", "a", "b"),("c", "c", "a")|`

= 0  .....[चूंकि C1 और C2 समान हैं]

shaalaa.com
सारणिक
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: सारणिक - प्रश्नावली [पृष्ठ ७९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 4 सारणिक
प्रश्नावली | Q 27 | पृष्ठ ७९

संबंधित प्रश्न

निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((0,1,2),(-1,0,-3),(-2,3,0))`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((2,-1,-2),(0,2,-1),(3,-5,0))`


x के मान ज्ञात कीजिए यदि `abs ((2,4),(5,1)) = abs ((2x, 4),(6, x))`


x के मान ज्ञात कीजिए यदि `abs ((2,3),(4,5)) = abs ((x, 3),(2x, 5))`


`[(cosalphacosbeta, cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalpha cosbeta,sinalphasinbeta,cosalpha)]` का मान ज्ञात कीजिए |


यदि a ≠ 0 हो तो समीकरण `[(x+a, x, x),(x, x + a, x),(x,x,x+a)] = 0` को हल कीजिए |


`[(1,x,y),(1,x+y,y),(1,x,x+y)]` का मान ज्ञात कीजिए।


यदि Δ = `|(1, x, x^2),(1, y, y^2),(1, z, z^2)|`, Δ1 = `|(1, 1, 1),(yz, zx, xy),(x, y, z)|`, तो सिद्ध कीजिए कि ∆ + ∆1 = 0


एक त्रिभुज ABC में यदि `|(1, 1, 1),(1 + sin"A", 1 + sin"B", 1 + sin"C"),(sin"A" + sin^2"A", sin"B" + sin^2"B", sin"C" + sin^2"C")|` = 0, तो सिद्ध कीजिए कि ∆ABC एक समद्विबाहु त्रिभुज है।


यदि x, y ∈ R, तब सारणिक ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` किस अंतराल में है।


सारणिक ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` ______


मान निकालिए- `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`


मान निकालिए- `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`


मान निकालिए- `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`


सिद्ध कीजिए - `|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` = 0


यदि A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, तो A–1 ज्ञात कीजिए। A–1 का प्रयोग करके रैखिक समीकरणों के निकाय x – 2y = 10 , 2x – y – z = 8, –2y + z = 7 को हल कीजिए।


यदि x + y + z = 0, तो सिद्ध कीजिए कि `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`


अंतराल `pi/4  x ≤ pi/4` में सारणिक `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 के विभिन्‍न वास्तविक मूलों की संख्या है।


यदि A, B और C एक त्रिभुज के कोण हैं तो सारणिक

`|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` बराबर है।


यदि A एक 3 × 3 कोटि का व्युत्क्रमणीय आव्यूह है तब |A–1 | = ______


यदि समीकरण |`|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0 का एक मूल x = – 9 है तब इसके अन्य दो मूल ______ हैं।


यदि f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., है तब A = ______


(A3)–1 = (A–1)3, जहाँ A एक वर्ग आव्यूह है और |A| ≠ 0 है।


|A–1| ≠ |A|–1, जहाँ व्युत्क्रमणीय आव्यूह है।


adj. A| = |A|2, जहाँ A एक कोटि 2 का वर्ग आव्यूह है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×