Advertisements
Advertisements
प्रश्न
सारणिक `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` का मान है
विकल्प
9x2(x + y)
9y2(x + y)
3y2(x + y)
7x2(x + y)
उत्तर
सही उत्तर 9y2(x + y) है।
व्याख्या:
Δ = `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|`
[C1 → C1 + C2 + C3 लागू करना]
= `|(3(x + y), x + y, x + 2y),(3(x + y), x, x + y),(3(x + y), x + 2y, x)|`
= `3(x + y)|(1, x + y, x + 2y),(1, x, x + y),(1, x + 2y, x)|`
[R1 → R1 – R2 और R3 → R3 – R2 लागू करना]
= `3(x + y)|(0, y, y),(1, x, x + y),(0, 2y, -y)|`
= 3(x + y)[1(y(–y) – 2y(y)]
= 9y2(x + y)
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।
`abs((cos theta, -sin theta),(sin theta, cos theta))`
निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।
`abs ((x^2 - x + 1, x - 1),(x + 1, x + 1))`
सिद्ध कीजिए कि सारणिक `[(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x)],` θ से स्वतंत्र है।
दिखाइए कि यदि सारणिक ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0 है तब sinθ = 0 या `1/2` होगा।
सारणिक ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|`, x से स्वतंत्र है।
सारणिक `|(1, 1, 1),(""^"n""C"_1, ""^("n" + 2)"C"_1, ""^("n" + 4)"C"_1),(""^"n""C"_2, ""^("n" + 2)"C"_2, ""^("n" + 4)"C"_2)|` = 8
यदि A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, तब A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
मान निकालिए- `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`
मान निकालिए- `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`
मान निकालिए- `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`
मान निकालिए- `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`
यदि A + B + C = 0, तो सिद्ध कीजिए कि `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0
यदि `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, तो x का मान ज्ञात कीजिए।
यदि A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, तो A–1 ज्ञात कीजिए। A–1 का प्रयोग करके रैखिक समीकरणों के निकाय x – 2y = 10 , 2x – y – z = 8, –2y + z = 7 को हल कीजिए।
यदि x + y + z = 0, तो सिद्ध कीजिए कि `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`
यदि `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, तब x का मान है
एक त्रिभुज का क्षेत्रफल 9 वर्ग इकाई है जिसके शीर्ष (-3, 0), (3, 0) और (0, k) हैं तो k का मान होगा।
सारणिक `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` बराबर है।
अंतराल `pi/4 x ≤ pi/4` में सारणिक `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 के विभिन्न वास्तविक मूलों की संख्या है।
यदि A, B और C एक त्रिभुज के कोण हैं तो सारणिक
`|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` बराबर है।
यदि f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, तब
यदि A एक 3 × 3 कोटि का आव्यूह है तो |3A| = ______
यदि A एक 3 × 3 कोटि का व्युत्क्रमणीय आव्यूह है तब |A–1 | = ______
यदि A एक 3 × 3 कोटि का आव्यूह है तब (A2)–1 = ______.
`("aA")^-1 = 1/"a" "A"^-1` जहाँ a एक वास्तविक संख्या है और A एक वर्ग आव्यूह है।
`|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` का अधिकतम मान `1/2` है।