हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

Six lead-acid types of secondary cells each of emf 2.0 V and internal resistance 0.015 Ω are joined in series to provide a supply to a resistance of 8.5 Ω. - Physics

Advertisements
Advertisements

प्रश्न

Six lead-acid types of secondary cells each of emf 2.0 V and internal resistance 0.015 Ω are joined in series to provide a supply to a resistance of 8.5 Ω. What are the current drawn from the supply and its terminal voltage?

संख्यात्मक

उत्तर

Number of secondary cells, n = 6

Emf of each secondary cell, E = 2.0 V

Internal resistance of each cell, r = 0.015 Ω

Series resistor is connected to the combination of cells.

Resistance of the resistor, R = 8.5 Ω

Current drawn from the supply = I, which is given by the relation,

I = `("nE")/("R" + "nr")`

= `(6 xx 2)/(8.5 + 6 xx 0.015)`

= `12/8.59`

= 1.39 A

Terminal voltage, V = IR = 1.39 × 8.5 = 11.87 A

Therefore, the current drawn from the supply is 1.39 A and the terminal voltage is 11.87 A.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Current Electricity - Exercise [पृष्ठ १२९]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
अध्याय 3 Current Electricity
Exercise | Q 3.15 (a) | पृष्ठ १२९
एनसीईआरटी Physics [English] Class 12
अध्याय 3 Current Electricity
Exercise | Q 15.1 | पृष्ठ १२९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A battery of emf 12 V and internal resistance 2 Ω is connected to a 4 Ω resistor as shown in the figure.

(a) Show that a voltmeter when placed across the cell and across the resistor, in turn, gives the same reading.

(b) To record the voltage and the current in the circuit, why is voltmeter placed in parallel and ammeter in series in the circuit?


Two identical cells of emf 1.5 V each joined in parallel, supply energy to an external circuit consisting of two resistances of 7 Ω each joined in parallel. A very high resistance voltmeter reads the terminal voltage of cells to be 1.4 V. Calculate the internal resistance of each cell.


A cell of emf 'E' and internal resistance 'r' is connected across a variable resistor 'R'. Plot a graph showing variation of terminal voltage 'V' of the cell versus the current 'I'. Using the plot, show how the emf of the cell and its internal resistance can be determined.


A battery of emf 10 V and internal resistance 3 Ω is connected to a resistor. If the current in the circuit is 0.5 A, what is the resistance of the resistor? What is the terminal voltage of the battery when the circuit is closed?


In a potentiometer arrangement, a cell of emf 1.25 V gives a balance point at 35.0 cm length of the wire. If the cell is replaced by another cell and the balance point shifts to 63.0 cm, what is the emf of the second cell?


A cell of emf ‘E’ and internal resistance ‘r’ is connected across a variable resistor ‘R’. Plot a graph showing the variation of terminal potential ‘V’ with resistance R. Predict from the graph the condition under which ‘V’ becomes equal to ‘E’.


Two non-ideal batteries are connected in series. Consider the following statements:-

(A) The equivalent emf is larger than either of the two emfs.

(B) The equivalent internal resistance is smaller than either of the two internal resistances.


Find the equivalent resistance of the network shown in the figure between the points a and b.


Do the electrodes in an electrolytic cell have fixed polarity like a battery?


A plate of area 10 cm2 is to be electroplated with copper (density 9000 kg m−3) to a thickness of 10 micrometres on both sides, using a cell of 12 V. Calculate the energy spent by the cell in the process of deposition. If this energy is used to heat 100 g of water, calculate the rise in the temperature of the water. ECE of copper = 3 × 10−7 kg C−1and specific heat capacity of water = 4200 J kg−1.


Answer the following question.

A cell of emf E and internal resistance r is connected across a variable resistor R. Plot the shape of graphs showing a variation of terminal voltage V with (i) R and (ii) circuit current I.


Emf of a cell is ______.

An energy source will supply a constant current into the load if its internal resistance is ______.

A cell having an emf E and internal resistance r is connected across a variable external resistance R. As the resistance R is increased, the plot of potential difference V across R is given by ______.


If n cells each of emf e and internal resistance r are connected in parallel, then the total emf and internal resistance will be ______.


The internal resistance of a cell is the resistance of ______


A cell of emf E is connected across an external resistance R. When current 'I' is drawn from the cell, the potential difference across the electrodes of the cell drops to V. The internal resistance 'r' of the cell is ______.


An ac generator generates an emf which is given by e = 311 sin (240 πt) V. Calculate:

  1. frequency of the emf.
  2. r.m.s. value of the emf.

Study the two circuits shown in the figure below. The cells in the two circuits are identical to each other. The resistance of the load resistor R is the same in both circuits.

If the same current flows through the resistor R in both circuits, calculate the internal resistance of each cell in terms of the resistance of resistor R. Show your calculations.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×