Advertisements
Advertisements
प्रश्न
Solve: (x + 2) (x - 5) (x - 6) (x + 1) = 144.
उत्तर
(x + 2) (x - 5) (x - 6) (x + 1) = 144
⇒ (x + 2) (x - 6) (x - 5) (x + 1)= 144
⇒ (x2 - 4x - 12) (x2 - 4x - 5) = 144
Put x2 - 4x = y
Then (y - 12) (y - 5) = 144
⇒ y2 - 17y + 60 - 144 = 0
⇒ y2 - 17y - 84 = 0
⇒ y2 - 21y + 4y - 84 = 0
⇒ y(y - 21) + 4(y -21) = 0
⇒ (y - 21) (y + 4) = 0
⇒ y - 21 = 0 or y + 4 = 0
⇒ y = 21 or y = -4
But x2 - 4x = y
∴ x2 - 4x = 21
⇒ x2 - 4x - 21 = 0
⇒ x2 - 7x + 3x - 21 = 0
⇒ x(x - 7) + 3(x - 7) = 0
⇒ (x - 7) (x +3) = 0
⇒ x - 7 = 0 or x + 3 = 0
⇒ x = 7 or x = -3
or
x2 - 4x = -4
⇒ x2 - 4x + 4 = 0
⇒ (x - 2)2 = 0
⇒ x - 2 = 0
⇒ x = 2
Hence, x = 7, -3 and 2.
APPEARS IN
संबंधित प्रश्न
Check whether the following is quadratic equation or not.
`(x+1/x)^2=3(1+1/x)+4`
Solve the following equation for x and give, in the following case, your answer correct to 2 decimal places:
x2 – 3x – 9 = 0
Without solving, comment upon the nature of roots of the following equation:
7x2 – 9x + 2 = 0
`6x^2+11x+3=0`
`x^2-(sqrt3+1)x+sqrt3=0`
Find which of the following equations are quadratic:
(x – 1)2 + (x + 2)2 + 3(x + 1) = 0
Solve:
`x/3 + 3/(6 - x) = (2(6 +x))/15; (x ≠ 6)`
Find the value of x, if a + 1 = 0 and x2 + ax – 6 = 0.
Check whether the following are quadratic equation:
(2x + 1) (3x – 2) = 6(x + 1) (x – 2)
Solve the following equation by using formula :
`2x^2 + sqrt(5) - 5` = 0