рд╣рд┐рдВрджреА

The Area of Circle, Inscribed in Equilateral Triangle is 154 Cms2. Find the Perimeter of Triangle. - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

The area of circle, inscribed in equilateral triangle is 154 cms2. Find the perimeter of
triangle.

рдЙрддреНрддрд░

Let circle inscribed in equilateral triangle

Be with centre O and radius ‘r’

Area of circle = ЁЭЬЛr2

ut given that area = 154 cm2.

ЁЭЬЛr2 = 154

`22/7xxr^2 = 154`

ЁЭСЯ2 = 7 × 7

r = 7cms

Radius of circle = 7cms

From fig. at point M, BC side is tangent at point M, BM ⊥ OM. In equilateral triangle, the perpendicular from vertex divides the side into two halves

BM = `1/2 BC = 1/2 (side =x) = x/2`

ΔBMO is right triangle, by Pythagoras theorem

`OB^2= BM^2+MO^2`

`OB=sqrt(r^2+(x^2/4 ))=sqrt(49+x^2/4)`OD=r

Altitude BD`=sqrt(3)/2(side)=sqrt(3)/2x=OB+OD`

BD – OD = OB

⇒`sqrt(3)/2x-r=sqrt(49+x^2/4`

⇒`sqrt(3)/2x-7=sqrt(49+x^2/4`

⇒`(sqrt(3)/2x-7)^2=(sqrt(x^2/4+49))^2`

⇒`3/4x^2-7sqrt(3x)+49=x^2/4+49`

⇒`x/2=7sqrt(3)⇒x=14sqrt(3)cm`

Perimeter =`3x=3xx14sqrt(3)`

`=42sqrt(3)cms`

 

 

 

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 13: Areas Related to Circles - Exercise 13.1 [рдкреГрд╖реНрда резреи]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 13 Areas Related to Circles
Exercise 13.1 | Q 12 | рдкреГрд╖реНрда резреи

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [4]

Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×