हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

The Balloon, the Light Rope and the Monkey Shown in Figure Are at Rest in the Air. If the Monkey Reaches the Top of the Rope, by What Distance Does the Balloon Descend? - Physics

Advertisements
Advertisements

प्रश्न

The balloon, the light rope and the monkey shown in figure are at rest in the air. If the monkey reaches the top of the rope, by what distance does the balloon descend? Mass of the balloon = M, mass of the monkey = m and the length of the rope ascended by the monkey = L. 

योग

उत्तर

Given:
The mass of monkey is m.
The mass of balloon is M. 

Initially, the monkey, balloon and the rope are at rest.

Let the centre of mass is at a point P.

When the monkey descends through a distance L,


The centre of mass shifts.

\[l_0 = \frac{m \times L + M \times 0}{M + m}\]

\[ = \frac{mL}{M + m} \text{ from P }\]
Therefore, the balloon descends through a distance
\[\frac{mL}{M + m}\].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Centre of Mass, Linear Momentum, Collision - Exercise [पृष्ठ १६०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 9 Centre of Mass, Linear Momentum, Collision
Exercise | Q 14 | पृष्ठ १६०

संबंधित प्रश्न

You are waiting for a train on a railway platform. Your three-year-old niece is standing on your iron trunk containing the luggage. Why does the trunk not recoil as she jumps off on the platform?


You are holding a cage containing a bird. Do you have to make less effort if the bird flies from its position in the cage and manages to stay in the middle without touching the walls of the cage? Does it makes a difference whether the cage is completely closed or it has rods to let air pass?


Consider the following two statements:

(A) Linear momentum of the system remains constant.

(B) Centre of mass of the system remains at rest.


In an elastic collision


The centre of mass of a system of particles is at the origin. It follows that


Two balls are thrown simultaneously in air. The acceleration of the centre of mass of the two balls while in air


Three particles of masses 1.0 kg, 2.0 kg and 3.0 kg are placed at the corners A, B and C respectively of an equilateral triangle ABC of edge 1 m. Locate the centre of mass of the system.  


Calculate the velocity of the centre of mass of the system of particles shown in figure.


Two blocks of masses 10 kg and 30 kg are placed along a vertical line. The first block is raised through a height of 7 cm. By what distance should the second mass be moved to raise the centre of mass by 1 cm? 


A car of mass M is at rest on a frictionless  horizontal surface and a pendulum bob of mass m hangs from the roof of the cart. The string breaks, the bob falls on the floor, makes serval collisions on the floor and finally lands up in a small slot made in the floor. The horizontal distance between the string and the slot is L. Find the displacement of the cart during this process.


Two fat astronauts each of mass 120 kg are travelling in a closed  spaceship moving at a speed of 15 km/s in the outer space far removed from all other material objects. The total mass of the spaceship and its contents including the astronauts is 660 kg. If the astronauts do slimming exercise and thereby reduce their masses to 90 kg each, with what velocity will the spaceship move?


During a heavy rain, hailstones of average size 1.0 cm in diameter fall with an average speed of 20 m/s. Suppose 2000 hailstones strike every square meter of a 10 m × 10 m roof perpendicularly in one second and assume that the hailstones do not rebound. Calculate the average force exerted by the falling hailstones on the roof. Density of a hailstone is 900 kg/m3.


A ball of mass m is dropped onto a floor from a certain height. The collision is perfectly elastic and the ball rebounds to the same height and again falls. Find the average force exerted by the ball on the floor during a long time interval. 


The axis of rotation of a purely rotating body

(a) must pass through the centre of mass

(b) may pass through the centre of mass

(c) must pass through a particle of the body

(d) may pass through a particle of the body.


Two particles P and Q of mass 1 kg and 3 kg respectively start moving towards each other from rest under mutual attraction. What is the velocity of their center of mass?


The radius and mass of earth are increased by 0.5%. Which of the following statements are true at the surface of the earth?


A shell of mass 'M' initially at rest suddenly explodes in three fragments. Two of these fragments are of mass 'M/4' each, which move with velocities 3 ms-1 and 4 ms-1 respectively in mutually perpendicular directions. The magnitude of velocity of the third fragment is ______.


The ratio of weights of a man inside a lift when it is stationary and when it is going down with a uniform acceleration 'a' is 3 : 2. The value of 'a' will be ______.

(a< g, g = acceleration due to gravity)


A uniform square plate has a small piece Q of an irregular shape removed and glued to the centre of the plate leaving a hole behind figure. The CM of the plate is now in the following quadrant of x-y plane ______.


(n – 1) equal point masses each of mass m are placed at the vertices of a regular n-polygon. The vacant vertex has a position vector a with respect to the centre of the polygon. Find the position vector of centre of mass.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×